
A Comparison of Experiments with the Bisecting-Spherical
K-Means Clustering and SVD Algorithms

D. Jiménez (dajigon@doctor.upv.es), V. Vidal (vvidal@dsic.upv.es)
Departament of Computer Systems and Computation.

 Polithecnic University of Valencia.
Spain

C. F. Enguix (carlos@must-es.com)
Mediterranean University of Science and Technology.

Spain

Abstract. In this paper we propose a
modified version of the Spherical K-Means
clustering algorithm, the Bisecting Spherical
K-Means. The Bisecting clustering algorithm
is used to determine the initial set in the
Spherical K-Means clustering algorithm. We
have prepare a set of experiments to compare
the SVD with different number of singular
values in order to find an optimal solution.
Analogously, we have done with our
modified version of the Spherical K-Means
clustering algorithm, with different number
of clusters. Finally we have compared both
techniques with respect to precision-recall
ratios.

1 Background and motivation
The information retrieval (IR) models used in

our experiments are classified within the classic
model, precisely on the vector space model. The
concrete models used are the generalized vector
space model and the latent semantic indexing
(LSI). The basic vector space model is defined
with a matrix of frequencies whereas in the
generalized vector model the matrix of
frequencies is substituted by a matrix of weights,
both generically known as a matrix of terms by
documents.

In figure 1 we briefly depict the preprocessing
used, which is presented in section 2. In that we
thoroughly explained the stemming algorithm and
the reduction heuristics used for reducing the
matrix space. Additionally it is explained the IR
validation technique used along this paper for the
whole set of experiments, known as average
precision-recall ratio.

Figure 1. Steps followed in the preprocessing.

In section 3 we present an overview of the
SVD technique applied to IR whereas in section 4
it is presented the modified version of the
Spherical K-Means clustering algorithm. In
section 5 we start by explaining the data set used
and present a series of interesting statistics. Then,
we compare the optimal reduced frequency and
weight matrices (fig. 1).

Figure 2. Comparison SVD and clustering algorithms.

Next, as we present in figure 2, we compare
several singular values within the SVD. After
choosing the optimal SVD approximation we
compare it with the optimal weight matrix.

Analogously we chose the optimal number of
clusters within the Bisecting Spherical K-Means
algorithm. Finally we compare both optimal
solutions.

2 Preprocessing
Several stemming algorithms were considered

to pre-process our target collection. In order to
evaluate which stemming algorithm to choose, we
downloaded a set of stemming algorithms from
the Efficient Stemmer Generation Project [7].
This site includes several stemming
implementations and a corpus of words to be
tested. We have slightly modified the Paice
stemming algorithm to deal with hyphenated
words. As stated in [10] the Porter algorithm is
classified as a light stemming algorithm prone to
under-stemming errors and the Paice and Lovins
as heavy stemming algorithms prone to over-
stemming errors. Light and heavy stemming
algorithms cannot be compared in terms of
accuracy as each type is suited for a different
task. On the other hand in terms of performance
accuracy we decided to include the Paice
algorithm in our experiments as a better
stemming algorithm as indicated in [10] and as
table 1 demonstrate.

 Porter Lovins Paice
Nº Input terms 49528 49656 49656

Nº. output terms 41283 35029 33297
Reduction 16.65% 29.45% 32.94%

Table 1. Comparison of Stemming Algorithms

In the preprocessing we have also included a
simple heuristics to eliminate terms that only
appear in a small documents set. The following
table presents the chosen options:

Nº.
Docs. Docs. Number

Terms
Size

Reduction
Nº Non
Zeros

0 0 % 12476 0 % 81082
1 0.24 % 6545 47.54 % 75151
2 0.47 % 4803 61.50 % 71667
3 0.71 % 3903 68.72 % 68967
4 0.94 % 3321 73.38 % 66639
5 1.18 % 2913 76.65 % 64599

Table 2. Heuristics used for pruning the term collection.
The criteria used to compare the reduction

heuristics, has been the average precision-recall
ratio as mentioned in [2]:

∑
=

=
qN

i q

i

N
rPrP

1

)()(

where)(rP is the average precision at the recall
level r, Nq is the number of queries used, and
Pi(r) is the precision at recall level r for the i-th
query. To get each Pi(r), first we evaluate the i-th
query obtaining a sorted document set ordered
descendently by relevance (relevance is equal to
the cosine of the angle between the query and the
document). Then we calculate the precision each
time a relevant document appears in the
answering set. In this data set we have
interpolated 11 standard recall levels as follows
[2]: Let rj∈{0,...,10}, be a reference to the j-th
standard recall level. Then,)(max)(

1
rPrP

jj rrrj +≤≤
= .

Now, we compare the reduced frequencies and
weight matrices for the sizes indicated.

Figure 3. Frequency Matrices Comparison.

Generally speaking, when reducing the
number of terms, precision drops but the
dimension of the problem is reduced. The best
case consists of when reducing the terms that
appear in only one document as we reduce up-to a
total of a 47.54% of terms meanwhile
maintaining practically the same precision, even
improving results in some cases.

Figure 4. Weight Matrices Comparison.

As it occurred in the frequency matrix when
reducing terms, in the weight matrix, the average
precision drops too, although in this case it
appears to be more evident. As it occurred in the
previous case, it has been identified as the most
optimal case, when reducing the terms that
appeared only in one document or 0.24 % of the
document collection. In spite of reducing almost
50% of the terms we still maintain almost the
same precision.

3 IR with SVD

3.1 Singular Value Descomposition
From a matrix nmM ×ℜ∈ we can obtain its

singular value decomposition (SVD) [8], [6] as:

∑
=

=Σ=
m

i

T
iii

T vuVUM
1

σ

where all the column vectors iu of the matrix
mmU ×ℜ∈ form a set of orthonormal vectors also

known as left singular vectors of M. nm×ℜ∈Σ is a
diagonal matrix containing the singular values of
M fulfilling that 0...21 ≥≥≥≥ mσσσ . nnV ×ℜ∈
is an orthogonal matrix whose columns vi are
known as right singular vectors of M.

It is normally sufficient and even better to
calculate a part of the spectrum of the singular
values of the matrix. In this context it is defined a
partial SVD of an arbitrary matrix M, the problem
of finding p singular values and its corresponding
right and left singular vectors. In other words, we
must find p positive numbers σ1≥σ2≥...≥σp≥0 and
p vectors m

iu ℜ∈ and n
iv ℜ∈ such that:

∑
=

=Σ=≈
p

i

T
iii

T
pppp vuVUMM

1

σ (1)

It can be found in the literature several
methods to solve the SVD problem such as the
complete SVD, partial or when the matrix is
sparse [8]. When we deal with sparse matrices we
use iterative methods such as Arnoldi [9],
Lanczos, [11], [14] and subspace iteration [11],
[14]. The LAPACK [1] and ARPACK [9]
libraries efficiently implement SVD for both
dense and sparse matrices.

3.2 Query evaluation with SVD
The SVD technique is classified within the

LSI methodology [3], [5]. The evaluation of

queries within the SVD technique is similar to the
vector space model. It is based on the calculation
of the angle between the query vector with all the
document vectors of the collection. The main
difference consists of the use of three ()VU ,,Σ
matrices instead of one, representing the
document information system and being used to
calculate the cosine of queries and documents.
The general expression for calculating the cosine
of the query and each document in the collection
is defined by [3]:

...nj
qm

qm

qm
qm

m

i
i

m

i
ij

m

i
iij

j

T
j

j 1 cos

1

2

1

2

1

22

===

∑∑

∑

==

=θ

where jm is the document vector, q is the column
vector that represents the query and n is the
number of documents in the collection. Normally,
both the terms by document matrix and the query
vector are normalized such that 1

22
== qmj ,

therefore we can simplify the calculation of the
cosine to:

∑
=

==
m

i
iij

T
jj qmqm

1
cosθ

When we use low rank approximation in the
LSI such as the partial SVD, the calculation of
the cosine or proximity of a query to a document
varies. Taking into account the expression
defined in (1) and that 1

2
=q we obtain:

()

() () () ()
222

222

cos

j

T
p

T
j

j
T
pp

T
p

T
pp

T
j

j
T
ppp

T
j

T
ppp

jp

T
jp

j

T
j

j

s
qUs

eV

qUVe

eVU

qeVU

eM
qeM

qm
qm

=
Σ

Σ
=

Σ

Σ
=

===θ

where je is the j-th canonical vector of
dimension n (number of documents) and

j
T
ppj eVs Σ= [3].

4 Clustering algorithms
The Spherical k-means clustering algorithm

tries to find k disjoint clusters { }k

jj 1=
π , from the

document collection expressed by matrix M such

that it maximizes the following objective
function:

{ }() ∑∑
= ∈

=
=

k

j m
j

tk

jj
j

cmf
1

1
π

π (2)

where cj is the normalised centroide vector or
concept vector of the cluster jπ , which it is
calculated given the following expression:

j

j
j

mj
j t

t
cm

n
t

j

 ; 1 ∑
∈

=
π

 (3)

where nj is the number of documents in the
cluster jπ .

Finding an optimal solution in a clustering
algorithm is a NP-complete problem. What
follows next is the description of a modified
version of the Spherical K-Means [4] algorithm,
where we use the technique of iterative Bisection
to determine the initial set of clusters.

Algorithm 1. Spherical K-Means algorithm.
Step 1. Calculate k initial clusters with the
bisection technique described in algorithm 2,

{ }k
jj 1

)0(
=π and its concept vectors { }k

jjc 1
)0(

=
Initialize t=0.

Step 2. Calculate the new partition { }k
jj

t
1

)1(
=

+π

induced by the concept vector { }k
jj

tc 1
)(

= :

{
} kjjlnl

cmcmmm t
l

Tt
j

Tn
ij

t
j

≤≤≠≤≤

>∈= =
+

1,,1
,:}{)()(

1
)1(π

Step 3. Calculate the concept vectors associated to
the new clusters { }k

jj
tc 1

)1(
=

+ , using expression (3)
Step 4. When the stopping criteria is fulfilled,
store { }k

jj
t

1
)1(

=
+π and { }k

jj
tc 1

)1(
=

+ . In other case
increment t=t+1 and go to step 2

The stopping criteria used in algorithm 1 is the
following:

2

1
)1(

1
)1(

1
)(

101
)}({

)}({)}({
−

=
+

=
+

= ×=≤
−

ε
π

ππ
k
jj

t

k
jj

tk
jj

t

f

ff

In step 1 of algorithm 1 we have used the
iterative Bisecting clustering method to determine
the k initial clusters. The following algorithm 2
describes the process:

Algorithm 2. Iterative Bisecting method for the
determination of k-initial clusters

Step 1. Select a sparse vector cl, where cl∈ℜm

with nnz(M)/(n*m) density:
 · nnz is the number of non-zero elements.
 · m is the number of terms.
 · n is the number of documents.
Select a maximum number of iterations (maxiter)
and the convergence criteria .
Initialize iter=0
Step 2. Divide M into two sub-clusters ML and MR
according to:

α≥∈ l
TciLi msiMm

α<∈ l
TciRi msiMm

Step 3. Calculate the concept vector of ML, given
cl define as indicated in expression (3)
Step 4. Stop when the stopping criteria has been
fulfilled or when iter is equal to maxiter and take
ML, cL,=cl and MR. In other case increment
iter=iter+1 and go to step 2.

The current version implemented in Matlab,
executes a small number of iterations within
algorithm 2, to determine the initial solution to
step 1 in algorithm 1 having maxiter∈[2,3] and
α∈[0,1]. The parameter α determines the number
and size of clusters generated.

5 Experiment Results

5.1 Case Study
The collection contains articles from the 1963

Time Magazine and were compiled from
ftp://ftp.cs.cornell.edu/pub/smart/time/ site. It is
stated on this site that the collection presents very
high recall & precision when compared with
more typical collections. A total number of 425
documents have been parsed, with an average of
546 words and 53 lines per document. The
contents referred to world news, especially
politics frequently mentioning the following
words: nato, african, nasser, political, communist,
regime, said, China, Europe, nuclear, germany,
Khrushchev, Gaulle, president, soviet, Moscow.

Which in fact, reminded us of the typical news
contents available in the cold war era. We have
used the same stop words list included on the
Web site to maintain consistency.

Query statistics were also obtained for the
query collection, formed by a total of 83 queries
with an average of 15 words and one line per
query. Some of the most frequent words used in

the queries were: arab, federation, british,
chinese, nuclear, nato, britain, indonesia, soviet,
Syria, minister, political, Kennedy, germany,
treaty, communist, Khrushchev, president.

5.2 Comparison between frequency &
weight matrices

After having considered the preprocessing
stages, we have selected the optimal cases for the
reduction of the frequency and weight matrices.
Now the question is to determine which of both
techniques offer the best efficiency. If we
consider storage requirements both of them have
the same needs, due to both present the same
structure and have the same number of non-zeros
elements situated in the same position. With
respect to computational costs the evaluation of
the queries is the same, due to the cost of the
cosine function is exactly equivalent. Therefore
the differences appear when evaluating average
query precision-recall ratios [2]. In the following
figure it is presented a curve of average precision
obtained from the optimal reduction frequency
and weight matrices, Mf and Mw respectively.

Figure 5. Frequency & Weight Matrix Comparison.

As it can be clearly seen the precision
obtained in the weight matrix Mw is superior to
the frequency one Mf.

5.3 SVD vs weight matrices
With the SVD we are using a low rank

approximation model. We obtain a different
approximation for the matrix depending on the
number of singular values being calculated.
Therefore, it is necessary to determine which is
the optimal approximation according to precision-
recall ratios. Next we present the curves of
average precision obtained for different low rank
approximations of Mw.

Figure 6. SVD Approximation Matrix Comparison.

It can be clearly seen as the approximation
rank (the number of calculated singular values)
grows, precision-recall ratios increase. It should
be noted, it is more convenient to consider the set
of low rank approximations compared to higher
ones, due to both storage and computational
requirements, which are lower. Taking into
account these premises, we choose as the most
optimal the approximation of 200 singular values,
denoted here as Msvd.

In figure 7 we compare both optimal
representatives Msvd and Mw.

Figure 7. SVD & Weight Matrix Comparison.

Although it seams at first glance that Mw
offers better performance with respect to
precision-recall ratios, the fact that both curves
are close to each other incites us to perform a
more detailed study. Some average curves can be
influenced by some abnormal queries. We have
compared both systems on a query-by-query basis
(fig. 8). In this case the comparison criteria used
is the R-Precision [2] and the relationship among
both has been represented with a histogram.

Figure 8. Precision Histogram SVD & Weight Matrix.

Both systems behave the same for a total of
81.5% of the queries and the differences among
them are equally distributed (table 3):

IR System Weight SVD
Total Queries 8 7

Table 3. Total Queries Summary.

Query IR
System

Nº Rel.
Docs

 Query IR
System

Nº Rel.
Docs

1 SVD 7 41 Weight 6
4 Weight 5 47 Weight 6

10 SVD 6 49 SVD 8
13 SVD 3 50 Weight 1
16 SVD 3 60 Weight 2
27 SVD 3 80 Weight 17
28 SVD 5 81 Weight 2
32 Weight 1

Table 4. Conflictive Queries Set.
It can be observed that the differences are

relatively small, except in a small subset of four
queries (32, 50, 60 & 81), where we can identify
very peculiar cases. Firstly, there are very few
relevant documents (only one for queries 32 &
50 and two for queries 60 & 81). Secondly,
R-Precision calculates the precision after having
analyzed the list of documents in the answering
set, therefore when analyzing so small document
subsets precision could substantially vary.

Next we present different query comparisons
of the precision curves obtained in both systems.

Figure 9. Query 32 Comparison. Average Precision.

In figure 9, it can be observed one of the
extreme cases mentioned above. In the weight
matrix the only relevant document is obtained in
the first attempt where as in SVD is obtained in
the second attempt.

Figure 10. Query 60 Comparison. Average Precision.

An analogous situation is depicted in figure
10, where the set of relevant documents are only
two.

From both previous cases we can deduce that
when the number of relevant documents is low,
Mw behaves better than Msvd, which in some
way it is logical, considering that SVD it is
based upon the semantic information among
documents, returning more relevant documents
but in these cases the solutions are so precise
and delimited, the semantic information
overflow is converted into noise.

Figure 11. Query 13 Comparison.Average Precision.

In figure 11 we present the optimal case for
the SVD. We can observe meanwhile SVD
maintains constant total precision, the weight
matrix looses precision when augmenting recall.

Finally we present an equilibrated example
(fig. 12) where it is very difficult to deduce
which is the best case or best curve.

Figure 12. Query 1 Comparison. Average Precision.

An interesting fact is that the SVD usually
plots smoother than the weight matrix. In both
cases computation time is similar, as the
optimization of the calculation of the cosine is
of the same order, dependent on the number of
non-zeros of the query. With respect to storage
requirements, this is substantially affected by
the type of collection. If we are dealing with a
small and sparse collection, the sparse structure
of the weight matrix represents the best method
according to storage requirements. But, if we are
dealing with a collection that generates a very
large matrix, we could improve storage
requirements with the SVD technique.

5.4 Bisecting Spherical K-Means
clustering algorithm

The precision-recall ratio is used to obtain,
for different number of clusters, the best
partition of the collection. In this case, as we
present in the next figure, the best partition is for
8 clusters, denoted here as Mc.

Figure 13. Cluster Comparison.

The experiments performed in the
benchmarks used in this paper, indicates

empirically, that having an]4.0,2.0[∈α gives
the possibility to generate several clusters.
When α is taken out of this range, very few
clusters are generated. Within this range we
have analyzed the behaviour of the optimization
function (2) with respect to algorithm 1, for
different number of clusters. We have obtained
that for α≈0.3, the optimization function
increments with respect to other values. It
should be mentioned that an optimal α has to be
adapted for each particular collection.

Taking into account that the vector cl in
algorithm 2 is randomly chosen, each particular
execution generates a new and probably
different optimal distribution of clusters.
Nevertheless, average precision-recall ratios are
not generally influenced by differences in the
optimal cluster distribution.

5.5 A comparison of the SVD and
Bisecting-Spherical K-Means clustering
algorithms

Again by using the same average precision-
recall ratio, we will compare the results obtained
in Msvd and Mc. To obtain the average
precision-recall ratio curves, we have to ensure
that we find all relevant documents. That is why
we have extended the answering set of the
clustering technique to several clusters until we
guarantee a 100% of recall compared to a
normal situation where only few clusters would
have been evaluated. First we order the clusters
according to the proximity of their centroids to
the query and then we build an ordered list of
the document answering set for the first cluster
followed by the second one and so on until
obtaining a 100% of the recall.

Figure 14. SVD & Cluster Comparison.

As it can be clearly seen in figure 14, the
average precision of the clustering system is
similar, although a bit inferior, to Msvd. What
should be remarked is the lower computational
cost and response time of the Mc based solution.
As a matter of fact, the clustering system
normally only evaluates the documents
contained within a single cluster, not
guaranteeing a 100% of recall. Nevertheless, we
normally only revise the first set of documents
returned by the answering set. Therefore we
give more importance to high precision vs recall
in the set of documents ranked at the top in the
answering set.

6 Conclusions
In these experiments we have analyzed

different IR techniques such as the generalized
vector space model including document
clustering and latent semantic indexing (SVD).
Although in first instance it seams we obtain
better results with reduced weight matrices, it is
not feasible to use such technique for a real life
case due to the fact it requires a huge storage
space when we are dealing with large document
collections. In conclusion, we recommend using
methods based on SVD or clustering.

Clustering methods are very dependent on
the initial selection of parameters to define the
process such as defining the number of clusters
to be obtained. On the other hand, the clustering
partition obtained for different parameters does
not sensibly affect the global behaviour of the
system. The main advantage of clustering
systems is the speed of the query response time,
avoiding comparing entire document
collections.

The SVD technique has the advantage of
dealing with the semantic information of the
collection, as also reducing the storage
requirements for matrices of large dimensions.

Referencias
[1] Anderson, E., Bai, Z., Bischof, C., “LAPACK

Users’ Guide”, SIAM, Second Edition, 1995
[2] Baeza-Yates, R. and Ribeiro-Neto, B.,

“Modern Information Retrieval”, Addison
Wesley, 1999, ISBN: 0-201-39829-X

[3] Berry, M.W., Browne, M., “Understanding
Search Engines: Mathematical Modeling and
Text Retrieval”, 1999, SIAM, ISBN:
0898714370

[4] Dhillon, I. S., Fan, J. and Guan, Y., “Efficient
Clustering Of Very Large Document
Collections”, 2001, Kluwer Academic
Publishers ISBN 1-4020-0033-2

[5] Dumais, S., Furnas, G., and Landauer, T.,
“Using latent semantic analysis to improve
access to textual information. In Proceedings
of Computer Human Interaction”, 1988

[6] Forsythe, E., Malcolm, M. A., and Moler, C.
B., “Computer Methods for Mathematical
Computations”, Prentice-Hall, 1976.

[7] Fox, C. and Fox, B., “Efficient Stemmer
Generation Project”
www.cs.jmu.edu/common/projects/Stemming/

[8] Golub, G.H., and Van Loan, C.F., “Matrix
Computations”, The Johns Hopkins University
Press, 1996, ISBN: 0-8018-5414-8

[9] Lehoucq, R., Maschhoff, K., Sorensen, D.,
Yang, C., “ARPACK Homepage–Arnoldi
Package”, The Dept. Comp. & Applied
Maths., Rice University www.caam.rice.edu .

[10] Paice, C. D., “An evaluation method for
stemming algorithms”, Proceedings of the
17th ACM-SIGIR Conference on R&D in
Information Retrieval, 1994, pp 42-50.

[11] Parlett, B., “The Symmetric Eigenvalue
Problem”,Prentice-Hall, 1980

[12] Savaresi,S.M. and Boley, D.L., “On the
performance of bisecting K-means and
PDDP”, First Siam International Conference
on Data Mining, April 2001, Chicago, USA
www.siam.org/meetings/sdm01/pdf/sdm01_05
.pdf

[13] Steinbach, M., Karypis, G., Kumar, V., “A
Comparison of Document Clustering
Techniques”, KDD-2000 Workshop on Text
Mining, August 20-23, 2000, Boston, MA,
USA

[14] Vidal, V. Ginestar, D. Verdú, G, “Análisis de
imágenes mediante descomposición parcial en
valores singulares”, Actas XVII CEDIA/XVII
Congreso de Matemática Aplicada, 2001
ISBN: 84-699-6144-6

