
A Comparison of Experiments with the Bisecting-Spherical            
K-Means Clustering and SVD Algorithms 

D. Jiménez (dajigon@doctor.upv.es), V. Vidal (vvidal@dsic.upv.es) 
Departament of Computer Systems and Computation. 

 Polithecnic University of Valencia. 
Spain 

C. F. Enguix (carlos@must-es.com) 
Mediterranean University of Science and Technology. 

Spain 

Abstract. In this paper we propose a 
modified version of the Spherical K-Means 
clustering algorithm, the Bisecting Spherical 
K-Means. The Bisecting clustering algorithm 
is used to determine the initial set in the 
Spherical K-Means clustering algorithm. We 
have prepare a set of experiments to compare 
the SVD with different number of singular 
values in order to find an optimal solution. 
Analogously, we have done with our 
modified version of the Spherical K-Means 
clustering algorithm, with different number 
of clusters. Finally we have compared both 
techniques with respect to precision-recall 
ratios. 

1 Background and motivation 
The information retrieval (IR) models used in 

our experiments are classified within the classic 
model, precisely on the vector space model. The 
concrete models used are the generalized vector 
space model and the latent semantic indexing 
(LSI). The basic vector space model is defined 
with a matrix of frequencies whereas in the 
generalized vector model the matrix of 
frequencies is substituted by a matrix of weights, 
both generically known as a matrix of terms by 
documents. 

In figure 1 we briefly depict the preprocessing 
used, which is presented in section 2. In that we 
thoroughly explained the stemming algorithm and 
the reduction heuristics used for reducing the 
matrix space. Additionally it is explained the IR 
validation technique used along this paper for the 
whole set of experiments, known as average 
precision-recall ratio. 

 
Figure 1. Steps followed in the preprocessing. 

In section 3 we present an overview of the 
SVD technique applied to IR whereas in section 4 
it is presented the modified version of the 
Spherical K-Means clustering algorithm. In 
section 5 we start by explaining the data set used 
and present a series of interesting statistics. Then, 
we compare the optimal reduced frequency and 
weight matrices (fig. 1). 

 
Figure 2. Comparison SVD and clustering algorithms. 

Next, as we present in figure 2, we compare 
several singular values within the SVD. After 
choosing the optimal SVD approximation we 
compare it with the optimal weight matrix. 



Analogously we chose the optimal number of 
clusters within the Bisecting Spherical K-Means 
algorithm. Finally we compare both optimal 
solutions. 

2 Preprocessing 
Several stemming algorithms were considered 

to pre-process our target collection. In order to 
evaluate which stemming algorithm to choose, we 
downloaded a set of stemming algorithms from 
the Efficient Stemmer Generation Project [7]. 
This site includes several stemming 
implementations and a corpus of words to be 
tested. We have slightly modified the Paice 
stemming algorithm to deal with hyphenated 
words. As stated in [10] the Porter algorithm is 
classified as a light stemming algorithm prone to 
under-stemming errors and the Paice and Lovins 
as heavy stemming algorithms prone to over-
stemming errors. Light and heavy stemming 
algorithms cannot be compared in terms of 
accuracy as each type is suited for a different 
task. On the other hand in terms of performance 
accuracy we decided to include the Paice 
algorithm in our experiments as a better 
stemming algorithm as indicated in [10] and as 
table 1 demonstrate. 

 Porter Lovins Paice 
Nº Input terms 49528 49656 49656 

Nº. output terms 41283 35029 33297 
Reduction 16.65% 29.45% 32.94% 

Table 1. Comparison of Stemming Algorithms 

In the preprocessing we have also included a 
simple heuristics to eliminate terms that only 
appear in a small documents set. The following 
table presents the chosen options: 

Nº. 
Docs. Docs. Number 

Terms 
Size 

Reduction 
Nº Non 
Zeros 

0 0 % 12476 0 % 81082 
1 0.24 % 6545 47.54 % 75151 
2 0.47 % 4803 61.50 % 71667 
3 0.71 % 3903 68.72 % 68967 
4 0.94 % 3321 73.38 % 66639 
5 1.18 % 2913 76.65 % 64599 

Table 2. Heuristics used for pruning the term collection. 
The criteria used to compare the reduction 

heuristics, has been the average precision-recall 
ratio as mentioned in [2]: 
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where )(rP  is the average precision at the recall 
level r, Nq is the number of queries used, and 
Pi(r) is the precision at recall level r for the i-th 
query. To get each Pi(r), first we evaluate the i-th 
query obtaining a sorted document set ordered 
descendently by relevance (relevance is equal to 
the cosine of the angle between the query and the 
document). Then we calculate the precision each 
time a relevant document appears in the 
answering set. In this data set we have 
interpolated 11 standard recall levels as follows 
[2]: Let rj∈{0,...,10}, be a reference to the j-th 
standard recall level. Then, )(max)(
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Now, we compare the reduced frequencies and 
weight matrices for the sizes indicated. 

 
Figure 3. Frequency Matrices Comparison. 

Generally speaking, when reducing the 
number of terms, precision drops but the 
dimension of the problem is reduced. The best 
case consists of when reducing the terms that 
appear in only one document as we reduce up-to a 
total of a 47.54% of terms meanwhile 
maintaining practically the same precision, even 
improving results in some cases. 

 
Figure 4. Weight Matrices Comparison. 



As it occurred in the frequency matrix when 
reducing terms, in the weight matrix, the average 
precision drops too, although in this case it 
appears to be more evident. As it occurred in the 
previous case, it has been identified as the most 
optimal case, when reducing the terms that 
appeared only in one document or 0.24 % of the 
document collection. In spite of reducing almost 
50% of the terms we still maintain almost the 
same precision. 

3 IR with SVD 

3.1 Singular Value Descomposition 
From a matrix nmM ×ℜ∈  we can obtain its 

singular value decomposition (SVD) [8], [6] as: 
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where all the column vectors iu  of the matrix 
mmU ×ℜ∈  form a set of orthonormal vectors also 

known as left singular vectors of M. nm×ℜ∈Σ  is a 
diagonal matrix containing the singular values of 
M fulfilling that 0...21 ≥≥≥≥ mσσσ . nnV ×ℜ∈  
is an orthogonal matrix whose columns vi are 
known as right singular vectors of M. 

It is normally sufficient and even better to 
calculate a part of the spectrum of the singular 
values of the matrix. In this context it is defined a 
partial SVD of an arbitrary matrix M, the problem 
of finding p singular values and its corresponding 
right and left singular vectors. In other words, we 
must find p positive numbers σ1≥σ2≥...≥σp≥0 and 
p vectors m

iu ℜ∈  and n
iv ℜ∈  such that: 
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It can be found in the literature several 
methods to solve the SVD problem such as the 
complete SVD, partial or when the matrix is 
sparse [8]. When we deal with sparse matrices we 
use iterative methods such as Arnoldi [9], 
Lanczos, [11], [14] and subspace iteration [11], 
[14]. The LAPACK [1] and ARPACK [9] 
libraries efficiently implement SVD for both 
dense and sparse matrices. 

3.2 Query evaluation with SVD 
The SVD technique is classified within the 

LSI methodology [3], [5]. The evaluation of 

queries within the SVD technique is similar to the 
vector space model. It is based on the calculation 
of the angle between the query vector with all the 
document vectors of the collection. The main 
difference consists of the use of three ( )VU ,,Σ  
matrices instead of one, representing the 
document information system and being used to 
calculate the cosine of queries and documents. 
The general expression for calculating the cosine 
of the query and each document in the collection 
is defined by [3]: 
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where jm  is the document vector, q is the column 
vector that represents the query and n is the 
number of documents in the collection. Normally, 
both the terms by document matrix and the query 
vector are normalized such that 1

22
== qmj , 

therefore we can simplify the calculation of the 
cosine to: 
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When we use low rank approximation in the 
LSI such as the partial SVD, the calculation of 
the cosine or proximity of a query to a document 
varies. Taking into account the expression 
defined in (1) and that 1

2
=q  we obtain: 
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where je  is the j-th canonical vector of 
dimension n (number of documents) and 

j
T
ppj eVs Σ=  [3]. 

4 Clustering algorithms 
The Spherical k-means clustering algorithm 

tries to find k disjoint clusters { }k

jj 1=
π , from the 

document collection expressed by matrix M such 



that it maximizes the following objective 
function: 
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where cj is the normalised centroide vector or 
concept vector of the cluster jπ , which it is 
calculated given the following expression: 
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where nj is the number of documents in the 
cluster jπ . 

Finding an optimal solution in a clustering 
algorithm is a NP-complete problem. What 
follows next is the description of a modified 
version of the Spherical K-Means [4] algorithm, 
where we use the technique of iterative Bisection 
to determine the initial set of clusters. 

Algorithm 1. Spherical K-Means algorithm. 
Step 1. Calculate k initial clusters with the 
bisection technique described in algorithm 2,  
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Step 3. Calculate the concept vectors associated to 
the new clusters { }k

jj
tc 1

)1(
=

+ , using expression (3) 
Step 4. When the stopping criteria is fulfilled, 
store { }k
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t

1
)1(

=
+π  and { }k
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)1(
=

+ . In other case 
increment t=t+1  and go to step 2 

The stopping criteria used in algorithm 1 is the 
following: 
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In step 1 of algorithm 1 we have used the 
iterative Bisecting clustering method to determine 
the k initial clusters. The following algorithm 2 
describes the process: 

 

Algorithm 2. Iterative Bisecting method for the 
determination of k-initial clusters 

Step 1. Select a sparse vector cl, where cl∈ℜm 

with nnz(M)/(n*m) density:  
  · nnz is the number of non-zero elements. 
  · m is the number of terms. 
  · n is the number of documents.  
Select a maximum number of iterations (maxiter) 
and the convergence criteria . 
Initialize iter=0 
Step 2. Divide M into two sub-clusters ML and MR  
according to:  

α≥∈ l
TciLi msiMm  

α<∈ l
TciRi msiMm  

Step 3. Calculate the concept vector of ML, given 
cl define as indicated in expression (3) 
Step 4. Stop when the stopping criteria has been 
fulfilled or when iter is equal to maxiter and take 
ML, cL,=cl and MR.  In other case increment 
iter=iter+1 and go to step 2. 

The current version implemented in Matlab, 
executes a small number of iterations within 
algorithm 2, to determine the initial solution to 
step 1 in algorithm 1 having maxiter∈[2,3] and 
α∈[0,1]. The parameter α determines the number 
and size of clusters generated. 

5 Experiment Results 

5.1 Case Study 
The collection contains articles from the 1963 

Time Magazine and were compiled from 
ftp://ftp.cs.cornell.edu/pub/smart/time/ site. It is 
stated on this site that the collection presents very 
high recall & precision when compared with 
more typical collections. A total number of 425 
documents have been parsed, with an average of 
546 words and 53 lines per document. The 
contents referred to world news, especially 
politics frequently mentioning the following 
words: nato, african, nasser, political, communist, 
regime, said, China, Europe, nuclear, germany, 
Khrushchev, Gaulle, president, soviet, Moscow. 

Which in fact, reminded us of the typical news 
contents available in the cold war era. We have 
used the same stop words list included on the 
Web site to maintain consistency. 

Query statistics were also obtained for the 
query collection, formed by a total of 83 queries 
with an average of 15 words and one line per 
query. Some of the most frequent words used in 



the queries were: arab, federation, british, 
chinese, nuclear, nato, britain, indonesia, soviet, 
Syria, minister, political, Kennedy, germany, 
treaty, communist, Khrushchev, president. 

5.2 Comparison between frequency & 
weight matrices 

After having considered the preprocessing 
stages, we have selected the optimal cases for the 
reduction of the frequency and weight matrices. 
Now the question is to determine which of both 
techniques offer the best efficiency. If we 
consider storage requirements both of them have 
the same needs, due to both present the same 
structure and have the same number of non-zeros 
elements situated in the same position. With 
respect to computational costs the evaluation of 
the queries is the same, due to the cost of the 
cosine function is exactly equivalent. Therefore 
the differences appear when evaluating average 
query precision-recall ratios [2]. In the following 
figure it is presented a curve of average precision 
obtained from the optimal reduction frequency 
and weight matrices, Mf and Mw respectively. 

 
Figure 5. Frequency & Weight Matrix Comparison. 

As it can be clearly seen the precision 
obtained in the weight matrix Mw is superior to 
the frequency one Mf. 

5.3 SVD vs weight matrices 
With the SVD we are using a low rank 

approximation model. We obtain a different 
approximation for the matrix depending on the 
number of singular values being calculated. 
Therefore, it is necessary to determine which is 
the optimal approximation according to precision-
recall ratios. Next we present the curves of 
average precision obtained for different low rank 
approximations of Mw. 

 
Figure 6. SVD Approximation Matrix Comparison. 

It can be clearly seen as the approximation 
rank (the number of calculated singular values) 
grows, precision-recall ratios increase. It should 
be noted, it is more convenient to consider the set 
of low rank approximations compared to higher 
ones, due to both storage and computational 
requirements, which are lower. Taking into 
account these premises, we choose as the most 
optimal the approximation of 200 singular values, 
denoted here as Msvd. 

In figure 7 we compare both optimal 
representatives Msvd and Mw. 

 
Figure 7. SVD & Weight Matrix Comparison. 

Although it seams at first glance that Mw 
offers better performance with respect to 
precision-recall ratios, the fact that both curves 
are close to each other incites us to perform a 
more detailed study. Some average curves can be 
influenced by some abnormal queries. We have 
compared both systems on a query-by-query basis 
(fig. 8). In this case the comparison criteria used 
is the R-Precision [2] and the relationship among 
both has been represented with a histogram. 



 
Figure 8. Precision Histogram SVD & Weight Matrix.  

Both systems behave the same for a total of 
81.5% of the queries and the differences among 
them are equally distributed (table 3): 

IR System Weight SVD 
Total Queries 8 7 

Table 3. Total Queries Summary. 

Query  IR 
System 

Nº Rel. 
Docs 

 Query  IR 
System 

Nº Rel. 
Docs 

1 SVD 7  41 Weight 6 
4 Weight 5  47 Weight 6 

10 SVD 6  49 SVD 8 
13 SVD 3  50 Weight 1 
16 SVD 3  60 Weight 2 
27 SVD 3  80 Weight 17 
28 SVD 5  81 Weight 2 
32 Weight 1     

Table 4. Conflictive Queries Set. 
It can be observed that the differences are 

relatively small, except in a small subset of four 
queries (32, 50, 60 & 81), where we can identify 
very peculiar cases. Firstly, there are very few 
relevant documents (only one for queries 32 & 
50 and two for queries 60 & 81). Secondly,     
R-Precision calculates the precision after having 
analyzed the list of documents in the answering 
set, therefore when analyzing so small document 
subsets precision could substantially vary. 

Next we present different query comparisons 
of the precision curves obtained in both systems. 

 
Figure 9. Query 32 Comparison. Average Precision. 

In figure 9, it can be observed one of the 
extreme cases mentioned above. In the weight 
matrix the only relevant document is obtained in 
the first attempt where as in SVD is obtained in 
the second attempt. 

 
Figure 10. Query 60 Comparison. Average Precision. 

An analogous situation is depicted in figure 
10, where the set of relevant documents are only 
two. 

From both previous cases we can deduce that 
when the number of relevant documents is low, 
Mw behaves better than Msvd, which in some 
way it is logical, considering that SVD it is 
based upon the semantic information among 
documents, returning more relevant documents 
but in these cases the solutions are so precise 
and delimited, the semantic information 
overflow is converted into noise.  

 
Figure 11. Query 13 Comparison.Average Precision. 

In figure 11 we present the optimal case for 
the SVD. We can observe meanwhile SVD 
maintains constant total precision, the weight 
matrix looses precision when augmenting recall. 

Finally we present an equilibrated example 
(fig. 12) where it is very difficult to deduce 
which is the best case or best curve. 



 
Figure 12. Query 1 Comparison. Average Precision. 

An interesting fact is that the SVD usually 
plots smoother than the weight matrix. In both 
cases computation time is similar, as the 
optimization of the calculation of the cosine is 
of the same order, dependent on the number of 
non-zeros of the query. With respect to storage 
requirements, this is substantially affected by 
the type of collection. If we are dealing with a 
small and sparse collection, the sparse structure 
of the weight matrix represents the best method 
according to storage requirements. But, if we are 
dealing with a collection that generates a very 
large matrix, we could improve storage 
requirements with the SVD technique. 

5.4 Bisecting Spherical K-Means 
clustering algorithm 

The precision-recall ratio is used to obtain, 
for different number of clusters, the best 
partition of the collection. In this case, as we 
present in the next figure, the best partition is for 
8 clusters, denoted here as Mc. 

 
Figure 13. Cluster Comparison. 

The experiments performed in the 
benchmarks used in this paper, indicates 

empirically, that having an ]4.0,2.0[∈α  gives 
the possibility to generate several clusters. 
When α is taken out of this range, very few 
clusters are generated. Within this range we 
have analyzed the behaviour of the optimization 
function (2) with respect to algorithm 1, for 
different number of clusters. We have obtained 
that for α≈0.3, the optimization function 
increments with respect to other values. It 
should be mentioned that an optimal α has to be 
adapted for each particular collection. 

Taking into account that the vector cl in 
algorithm 2 is randomly chosen, each particular 
execution generates a new and probably 
different optimal distribution of clusters. 
Nevertheless, average precision-recall ratios are 
not generally influenced by differences in the 
optimal cluster distribution. 

5.5 A comparison of the SVD and 
Bisecting-Spherical K-Means clustering 
algorithms 

Again by using the same average precision-
recall ratio, we will compare the results obtained 
in Msvd and Mc. To obtain the average 
precision-recall ratio curves, we have to ensure 
that we find all relevant documents. That is why 
we have extended the answering set of the 
clustering technique to several clusters until we 
guarantee a 100% of recall compared to a 
normal situation where only few clusters would 
have been evaluated. First we order the clusters 
according to the proximity of their centroids to 
the query and then we build an ordered list of 
the document answering set for the first cluster 
followed by the second one and so on until 
obtaining a 100% of the recall. 

 
Figure 14. SVD & Cluster Comparison. 



As it can be clearly seen in figure 14, the 
average precision of the clustering system is 
similar, although a bit inferior, to Msvd. What 
should be remarked is the lower computational 
cost and response time of the Mc based solution. 
As a matter of fact, the clustering system 
normally only evaluates the documents 
contained within a single cluster, not 
guaranteeing a 100% of recall. Nevertheless, we 
normally only revise the first set of documents 
returned by the answering set. Therefore we 
give more importance to high precision vs recall 
in the set of documents ranked at the top in the 
answering set. 

6 Conclusions 
In these experiments we have analyzed 

different IR techniques such as the generalized 
vector space model including document 
clustering and latent semantic indexing (SVD). 
Although in first instance it seams we obtain 
better results with reduced weight matrices, it is 
not feasible to use such technique for a real life 
case due to the fact it requires a huge storage 
space when we are dealing with large document 
collections. In conclusion, we recommend using 
methods based on SVD or clustering. 

Clustering methods are very dependent on 
the initial selection of parameters to define the 
process such as defining the number of clusters 
to be obtained. On the other hand, the clustering 
partition obtained for different parameters does 
not sensibly affect the global behaviour of the 
system. The main advantage of clustering 
systems is the speed of the query response time, 
avoiding comparing entire document 
collections. 

The SVD technique has the advantage of 
dealing with the semantic information of the 
collection, as also reducing the storage 
requirements for matrices of large dimensions. 
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