
D2.3.3.a SemVersion –
Versioning RDF and Ontologies

Max Völkel (Universität Karlsruhe)

with contributions from:
Carlos F. Enguix (National University of Ireland, Galway, Ireland)

Sebastian Ryszard Kruk (DERI)
Anna V. Zhdanova (DERI)

Robert Stevens (U Manchester)

Abstract.
EU-IST Network of Excellence (NoE) IST-2004-507482 KWEB
Deliverable D2.3.3.a (WP2.3)

Copyright c© 2005 The contributors

Document Identi-
fier

KWEB/2004/D2.3.3.a/v1.0

Project KWEB EU-IST-2004-507482
Version v1.0
Date June 6th, 2005
State final
Distribution internal

Knowledge Web Consortium

This document is part of a research project funded by the IST Programme of the Commission of the European
Communities as project number IST-2004-507482.

University of Innsbruck (UIBK) -
Coordinator
Institute of Computer Science
Technikerstrasse 13
A-6020 Innsbruck
Austria
Fax: +43(0)5125079872, Phone:
+43(0)5125076485/88
Contact person: Dieter Fensel
E-mail address: dieter.fensel@uibk.ac.at

Ècole Polythechnique Fédérale de Lausanne
(EPFL)
Computer Science Department
Swiss Federal Institute of Technology
IN (Ecublens), CH-1015 Lausanne
Switzerland
Fax: +41 21 6935225, Phone: +41 21 6932738
Contact person: Boi Faltings
E-mail address: boi.faltings@epfl.ch

France Telecom (FT)
4 Rue du Clos Courtel
35512 Cesson Sévigné
France. PO Box 91226
Fax: +33 2 99124098, Phone: +33 2 99124223
Contact person : Alain Leger
E-mail address: alain.leger@rd.francetelecom.com

Freie Universität Berlin (FU Berlin)
Takustrasse 9
14195 Berlin
Germany
Fax: +49 30 83875220, Phone: +49 30 83875223
Contact person: Robert Tolksdorf
E-mail address: tolk@inf.fu-berlin.de

Free University of Bozen-Bolzano (FUB)
Piazza Domenicani 3
39100 Bolzano
Italy
Fax: +39 0471 315649, Phone: +39 0471 315642
Contact person: Enrico Franconi
E-mail address: franconi@inf.unibz.it

Institut National de Recherche en
Informatique et en Automatique (INRIA)
ZIRST - 655 avenue de l’Europe -
Montbonnot Saint Martin
38334 Saint-Ismier
France
Fax: +33 4 7661 5207, Phone: +33 4 7661 5366
Contact person: Jérôme Euzenat
E-mail address: Jerome.Euzenat@inrialpes.fr

Centre for Research and Technology Hellas
/
Informatics and Telematics Institute
(ITI-CERTH)
1st km Thermi - Panorama road
57001 Thermi-Thessaloniki
Greece. Po Box 361
Fax: +30-2310-464164, Phone: +30-2310-464160
Contact person: Michael G. Strintzis
E-mail address: strintzi@iti.gr

Learning Lab Lower Saxony (L3S)
Expo Plaza 1
30539 Hannover
Germany
Fax: +49-511-7629779, Phone: +49-511-76219711
Contact person: Wolfgang Nejdl
E-mail address: nejdl@learninglab.de

National University of Ireland Galway
(NUIG)
National University of Ireland
Science and Technology Building
University Road
Galway
Ireland
Fax: +353 91 526388, Phone: +353 87 6826940
Contact person: Christoph Bussler
E-mail address: chris.bussler@deri.ie

The Open University (OU)
Knowledge Media Institute
The Open University
Milton Keynes, MK7 6AA
United Kingdom
Fax: +44 1908 653169, Phone: +44 1908 653506
Contact person: Enrico Motta
E-mail address: e.motta@open.ac.uk

Universidad Politécnica de Madrid (UPM)
Campus de Montegancedo sn
28660 Boadilla del Monte
Spain
Fax: +34-913524819, Phone: +34-913367439
Contact person: Asunción Gómez Pérez
E-mail address: asun@fi.upm.es

University of Karlsruhe (UKARL)
Institut für Angewandte Informatik und Formale
Beschreibungsverfahren - AIFB
Universität Karlsruhe
D-76128 Karlsruhe
Germany
Fax: +49 721 6086580, Phone: +49 721 6083923
Contact person: Rudi Studer
E-mail address: studer@aifb.uni-karlsruhe.de

University of Liverpool (UniLiv)
Chadwick Building, Peach Street
L697ZF Liverpool
United Kingdom
Fax: +44(151)7943715, Phone: +44(151)7943667
Contact person: Michael Wooldridge
E-mail address: M.J.Wooldridge@csc.liv.ac.uk

University of Manchester (UoM)
Room 2.32. Kilburn Building, Department of
Computer Science, University of Manchester,
Oxford Road
Manchester, M13 9PL
United Kingdom
Fax: +44 161 2756204, Phone: +44 161 2756248
Contact person: Carole Goble
E-mail address: carole@cs.man.ac.uk

University of Sheffield (USFD)
Regent Court, 211 Portobello street
S14DP Sheffield
United Kingdom
Fax: +44 114 2221810, Phone: +44 114 2221891
Contact person: Hamish Cunningham
E-mail address: hamish@dcs.shef.ac.uk

University of Trento (UniTn)
Via Sommarive 14
38050 Trento
Italy
Fax: +39 0461 882093, Phone: +39 0461 881533
Contact person: Fausto Giunchiglia
E-mail address: fausto@dit.unitn.it

Vrije Universiteit Amsterdam (VUA)
De Boelelaan 1081a
1081HV. Amsterdam
The Netherlands
Fax: +31842214294, Phone: +31204447731
Contact person: Frank van Harmelen
E-mail address: Frank.van.Harmelen@cs.vu.nl

Vrije Universiteit Brussel (VUB)
Pleinlaan 2, Building G10
1050 Brussels
Belgium
Fax: +32 2 6293308, Phone: +32 2 6293308
Contact person: Robert Meersman
E-mail address: robert.meersman@vub.ac.be

Changes

Version Date Author Changes

1.0 08.06.05 Max Völkel,
AIFB Karlsruhe

Initial document

2.0 25.08.05 Max Völkel,
AIFB Karlsruhe

Substantial rewrite, including Rdf2Go and
RDFReactor

Executive Summary

Change management for ontologies becomes a crucial aspect for any kind of on-
tology management environment, as engineering of ontologies often takes place in
distributed settings where multiple independent users have to interact. There is also
a variety of ontology languages used. Although RDF Schema and OWL are gaining
more and more popularity, a lot of semantic data still resides in other formats, as it
is the case in the biology domain (c. f. Sec. 1.2.3). Until now, no standard version-
ing system or methodology has arisen, that can provide a common way to handle
versioning issues.

This deliverable describes the RDF-centric versioning approach and implementa-
tion SemVersion. It provides structural (purely triple based) and semantic (ontology
language based, like RDFS, OWL and OBOL) versioning. It separates language-
neutral features for data management from language-specific features like semantic
diffs in design and implementation. This way SemVersion offers a common approach
for already widely used RDF models and a wide range of ontology languages.

The requirements for our system are derived from a set of practical scenarios,
which are documented in detail in this deliverable.

The project experienced a shift in requirements, when Robert Stevens from Uni-
versity of Manchester joined the group in May 2005. WP 2.3 decided to tackle the
problem of versioning the Gene Ontology.

In [WW04] we suggested reification for data storage. As we now face the large
volume of the Gene Ontology data (see 1.2.3), we need more powerful storage so-
lutions than for the other use cases. Addressing triple sets (models) is another
challenge. In [WW04] we argued to use reification, which would make models four
times as large. To avoid this, we now use native quad stores, which provide a context
URI for each triple. We use the context URI to address models more efficiently.

A sub-project, Rdf2Go, has been created to deal with various model abstrac-
tions and serves as a unifying triple (and quad) store entry point. Rdf2Go is
described in Chapter 2.

A second sub-project of SemVersion, RdfReactor, facilitates the usage of RDF
Schema based data in Java significantly. It’s latest version is based on Rdf2Go. In
fact, RDFReactor has been designed for SemVersion in the first place. RDFReactor
is described in Sec. 1.5.4.

Contents

1 SemVersion – An RDF Versioning System 1
1.1 Introduction . 1

1.1.1 Term Definitions . 1
1.2 Requirements for an ontology versioning system 3

1.2.1 Use Case 1: MarcOnt Collaborative Ontology Development . . 3
1.2.2 Use Case 2: The People’s Portal for Community Ontology

Development . 5
1.2.3 Use Case 3: Versioning the Gene Ontology 6
1.2.4 Use Case 4: Versioning in a Semantic Wiki 9
1.2.5 Use Case 5: Analysis of Wikipedia 9
1.2.6 Use Case 6: Analysis of the FOAF Vocabulary Definition . . . 10

1.3 Data Management Design . 11
1.3.1 Version Data Management . 11

1.4 Versioning Functionality Design . 13
1.4.1 Structural Diff . 13
1.4.2 Semantic Diff . 14
1.4.3 Blank Nodes and the Diff . 15
1.4.4 Branch and Merge . 16
1.4.5 Conflict Detection . 17
1.4.6 Query Language Extension . 17

1.5 Implementation . 17
1.5.1 Storage Layer Access . 18
1.5.2 Handling Commits . 18
1.5.3 Generating globally unique URIs 18
1.5.4 RDFReactor . 19

2 RDF2Go 20
2.1 What is RDF2Go? . 20
2.2 Working Example: Simple FOAF via RDF2Go 22
2.3 Architecture . 24
2.4 The API . 24

2.4.1 Model and ContextModel . 24
2.4.2 Queries . 27

iii

CONTENTS

2.5 How to get started . 28

3 Versioning Ontology Languages with SemVersion 29

4 How To Use SemVersion 31
4.1 Typical Actions . 31
4.2 Administration . 33
4.3 Usage and Implementation Notes . 33
4.4 SemVersion Usage Examples . 34

4.4.1 Versioning for MarcOnt . 34
4.4.2 Versioning the Gene Ontology 34

4.5 Conclusion . 34

iv June 6th, 2005 KWEB/2004/D2.3.3.a/v1.0

Chapter 1

SemVersion – An RDF Versioning
System

1.1 Introduction

As outlined in the Knowledge Web Deliverable D2.3.1
”
Specification of a methodol-

ogy for syntactic and semantic versioning” [WW04], there is a clear need for RDF
data and ontology versioning. This deliverable describes a concrete approach and
explains briefly the underlying concepts.

The concrete implementation is called SemVersion1. It is published as an open-
source software project on the site OntoWare. The project homepage is depicted in
Fig. 1.1.

Our approach is inspired by the classical CVS system for version management of
textual documents (e.g. Java code). Core element of our approach is the separation
of language-specific features (the diff) from general features (such as structural diff,
branch and merge, management of projects and metadata). A speciality of RDF is
the usage of so-called blank nodes. As part of our approach we present a method
for blank node enrichment which helps in versioning of such blank nodes.

1.1.1 Term Definitions

RDF is a data model with the types URI, blank node, plain literal, language
tagged literal and data typed literal. It consists of triples (also called state-
ments). A set of triples is called model (or triple set). An ontology is a model,
in which semantics have been assigned to certain URIs and/or triple constructs,
according to an ontology language. We use the term concept to denote things

1The name resembles the upcoming de-facto standard subversion ([sub]) and is also a short
form of ”Semantic Versioning”

1

1. SEMVERSION – AN RDF VERSIONING SYSTEM

Figure 1.1: Homepage of the SemVersion project

2 June 6th, 2005 KWEB/2004/D2.3.3.a/v1.0

D2.3.3.a SemVersion – Versioning RDF and Ontologies IST Project IST-2004-507482

ontologies talk about: classes, properties and instances. In an RDF context, every-
thing that is addressable by URI or by blank node is considered a concept.

SemVersion versions models. A model under version control is named a ver-
sioned model. A versioned model has a root model, which is a version. A
version is a model plus versioning metadata. Versions in SemVersion never change.
Instead, every operation that changes the state of a versioned model (commit, merge,
...) results in the creation of a new version. More details about SemVersion’s con-
ceptual data model can be found in Sec. ??.

1.2 Requirements for an ontology versioning sys-

tem

We gathered different requirements from Knowledge Web partners in order to create
a more general design. We tried to gather as concrete usage requirements as possible
to obtain a usable (and hence testable) design and implementation. In this section
we present the different usage requirements.

1.2.1 Use Case 1: MarcOnt Collaborative Ontology Devel-
opment

Stakeholder: Sebastian Ryszard Kruk (DERI), sebastian.kruk@deri.org

The MarcOnt2 scenario served as the first source of inspiration for SemVersion.
MarcOnt is a project to create an ontology for library data exchange.

One of the most commonly used bibliographic description format is MARC21.
Though it is capable of describing most of the features of the library resources,
its semantic content is low. It means that while searching for a resource, one has
to look for particular keywords in the resource’s description fields, but one cannot
carry out a search be meaning or concept. This can often result in large sets of
results. Also the data communication between library systems is very hard to extend.
On of the earliest shared vocabularies is the Dublin Core Metadata standard for
library resource description. Besides the fact that most of the information covered
by MARC21 is lost, the full potential of the Semantic Web is not being used.

The project aims at creating the MarcOnt ontology, based on a social agreement
that will combine descriptions from MARC21 together with DublinCore and makes
use of the full potential of the Semantic Web technologies. This will include transla-
tions to/from other ontologies, more efficient searching for resources (i.e. users may
have impact on the searching process).

2http://www.marcont.org/

KWEB/2004/D2.3.3.a/v1.0 June 6th, 2005 3

1. SEMVERSION – AN RDF VERSIONING SYSTEM

Figure 1.2: Versions and suggestions in the MarcOnt use case

The MarcOnt initiative is strongly connected to the Jerome Digital Library
project (e-library with semantics, formerly ElvisDL) - which implements a simple
library ontology and can be used as a starting point for further work. MarcOnt also
assumed that JeromeDL will be a testing platform for an experimental results from
the MarcOnt initiative.

Versioning Requirements The MarcOnt project has a clear view on the process
of ontology evolution. It starts with a current main version. Now people can suggest
(multiple, independent) changes. Then the community discusses about the proposed
changes and selects some. The changes are applied and a new main version is created.
The process is illustrated in Fig. 1.2.

The ontology builder of the MarcOnt portal requires not only a GUI for building
the ontology through submitting changes. It also needs the ability to:

• Manage a main trunk of the ontology (R1.1)3

3Requirements are numbered by ”use case number” / ”.” / running number

4 June 6th, 2005 KWEB/2004/D2.3.3.a/v1.0

D2.3.3.a SemVersion – Versioning RDF and Ontologies IST Project IST-2004-507482

• Manage versions of suggestions (R1.2)

• Generate snapshots of the main ontology with some suggestions applied (R1.3)

• Detect and resolve conflicts (R1.4)

• Add suggestions to the main trunk (R1.5)

• Attach mapping/translation rules (R1.6)

• Be able to check out arbitrary versions by HTTP GET with a specific URL
(R1.7)

1.2.2 Use Case 2: The People’s Portal for Community On-
tology Development

Stakeholder: Anna V. Zhdanova (DERI), anna.zhdanova@deri.at

People’s portal [Zhd05] is an implementation of a human-Semantic Web inter-
active environment. The environment is named The People’s Portal and it is im-
plemented employing Java, Jena and Tomcat. The basic idea of the People’s portal
is to marry a community Semantic Web portal technology with collaborative ontol-
ogy management functionalities in order to bring the Semantic Web to masses and
overcome limitations of the existing community web portals.

Use cases: The People’s portal environment is applied to DERI and used to
produce part of the DERI web site. DERI members can login here to enter the
environment. DERI web site managers can login here to manage the data in a
centralized fashion.

Versioning Requirements The system uses a subset of RDF Schema. Users
of the portal can introduce new classes and properties on the fly. Consensus is
partly reached by usage. Properties that are often used and classes that have many
instances are considered useful for the community. Hence it is necessary to ask the
versioning system:

• How many instance does this class have now? Last week? Generalised: How
many instances does a concept (rdfs:Class or rdfs:Property) has at a specific
point in time? (R2.1)

• When has this class first been instantiated? (R2.2)

• How many properties are attached to this class? Since when? (R2.3) number
of instances of class, properties NOW (specific point in time also)

• Who added this ontology item?

KWEB/2004/D2.3.3.a/v1.0 June 6th, 2005 5

1. SEMVERSION – AN RDF VERSIONING SYSTEM

• Store new versions and return diffs between arbitrary points in time.

• Return predecessor of an ontology item (class, property) in time

• Support the evolution primitives:
”
add”,

”
remove” and

”
replace” on concept

definitions.

• Return number of changed instance items (also properties, classes) and show
which items changed.

• Which concepts appeared within a given time interval?

• Queries across change log/activity log: For each attribute, when was it instan-
tiated and when have instances been created?

• What are hot attributes? Those instantiated or changed often recently. Which
are these?

1.2.3 Use Case 3: Versioning the Gene Ontology

Stakeholder: Robert Stevens (robert.stevens@manchester.ac.uk)

Background An important step was the phone conference on 12.07.2005, in which
common goals were identified4. Robert Stevens from Manchester University, has be-
come an active member of the work package. Robert is a biologist who is also a
doctor in Computer Science. Robert is a Bioinformatics Lecturer in the BioHealth
Informatics Group at the University of Manchester. He has around 80 publications
in international conferences, workshops, journals and so on. He was involved in the
TAMBIS project for transparent access and integration of biological databases. Now
one of his main interests is in the definition of formal biological ontologies. He is
involved in the transformation of the Gene Ontology controlled vocabulary into a
description-logics OWL based ontology. He is interested in contributing to the devel-
opment of an ontology-based versioning system to the Gene Ontology which is part
of the Open Biological Ontologies. Also he want’s to study how conceptualisations
change over time, hence the need for data analysis.

Use case description The gene ontology5 community is where collaborative on-
tology construction is practiced a long time comparing to other communities. The
GO community showed that involvement of multiple parties is a must for a compre-
hensive ontology as a result. The GO community is far ahead of other communities

4http://sw.deri.org/wiki/KnowledgeWeb/WP23/MeetingAgenda12July2005
5http://www.geneontology.org

6 June 6th, 2005 KWEB/2004/D2.3.3.a/v1.0

D2.3.3.a SemVersion – Versioning RDF and Ontologies IST Project IST-2004-507482

constructing ontologies [MB04]. Hence they are the ideal subject to study real-world
change operations.

”
The goal of the Gene Ontology (GO) consortium is to produce a controlled

vocabulary that can be applied to all organisms even as knowledge of gene and
protein roles in cells is accumulating and changing. GO provides three structured
networks of defined terms to describe gene product attributes.”6

Current Gene Ontology versions are maintained by CVS repositories which han-
dle only syntactic differences among ontologies. In other words CVS is not able
to differentiate class versions for instance, being able only to differentiate text/file
differences.

Versioning Requirements Essentially, here SemVersion is used for data analysis.
In order to study ontology change operations, SemVersion must cope with multiple
versions of the Gene Ontology (GO). The GO is authored in Open Biology Language7

(OBOL), for which usable OWL exports exist. The GO has about 19.000 concepts.
Assuming about 10 statements per concept we estimate a size of roughly 100.000
statements – per version. The researchers who study the ontology change patterns
(Robert Stevens and his team) would like to use a monthly snapshot for a period of
6 years. This amounts to 6 years × 12 month = 72 versions. Thus the underlying
triple store must be able to handle up to 7 million triples and search (maybe even
reason) over them.

The requirements in short form are thus

• Store up to 7 million triples (R3.1)

• Allow meta-data queries over the 72 versions (R3.2)

• Allow data queries over all versions (7 million triples) (R3.3)

• OBOL semantic diff (R3.4)

• OBOL to RDF converter (R3.5)

• A Java interface (R3.6)

Data Set The Gene Ontology
”
per se” is not an Ontology in the formal sense,

it is rather a cross-species controlled biological vocabulary as previously indicated
above. The Gene Ontology is divided in three disjoint sub-ontologies, currently
stored in big flat files or also stored in persistent repositories such as a relational
database (MySQL database). The three sub-ontologies are divided into vocabularies

6Extracted from the OBO site http://obo.sourceforge.net/
7http://obo.sourceforge.net/

KWEB/2004/D2.3.3.a/v1.0 June 6th, 2005 7

1. SEMVERSION – AN RDF VERSIONING SYSTEM

that describe gene products in terms of: Molecular functions, associated biological
processes and cellular components.

The GO ontology permits to associate biological relationships among molecu-
lar functions, the involvement of molecular functions in biological processes and
the occurrence of biological processes at a given time and space in cells [cre01].
Whereas the molecular function defines what a gene product does at the biochemi-
cal level, the biological process normally indicates a transformation process triggered
or contributed by a gene product involving multiple molecular functions. Finally the
cellular component indicates the cell structure a gene product is part of. The Gene
Ontology contains around 20.000 concepts which are convertible to OWL. The latest
statistics about the GO could be found at the GO site 8:

Current term counts (as of June 20, 2005 at 6:00 Pacific time):

• 17946 terms, 94.2% with definitions.

• 6984 (38.9%) Molecular functions

• 9410 (52.4%) Biological processes

• 1552 (8.6%) Cellular components

• There are 998 obsolete terms not included in the above statistics (Total Terms=18944)

Further complexity assessments can be found at http://www.fruitfly.org/~cjm/
obol/doc/go-complexity.html.

According to [RSG] the GO is a handcrafted ontology accepting only
”
is-a” and

”
part-of” relationships. The hierarchical organization is represented via a directed-

acyclic- graph (DAG) structure similar to the representation of Web pages or hyper-
text systems. Members of the Consortium group contribute to updates and revisions
of the GO. The Go is maintained by editors and scientific curators who notify GO
users of ontology changes via email, or at the GO site by monthly reports9. Please
note that ontology creation and annotation of GO terms in databases (association
of GO terms with gene products) are two different operations. Each annotation
should include its data provenance or source(a cross database reference, a literature
reference, etc).

Technically, there are two different data sets, available via public CVS stores.
Set I ranges from 1999 to 2001 and has a snapshot of the GO for each month in GO
syntax. The second set runs from 2001 up to now and contains for each month a Go
snapshot in OBO syntax. As OBO is the newer syntax, we assume the existence of
a converter from GO syntax to OBO syntax available from the GO community. In
order to use the data sets, one has to decide for a format. There are three options: (a)

8http://www.geneontology.org/GO.downloads.shtml#ont
9http://www.geneontology.org/MonthlyReports/

8 June 6th, 2005 KWEB/2004/D2.3.3.a/v1.0

D2.3.3.a SemVersion – Versioning RDF and Ontologies IST Project IST-2004-507482

RDF, (b) OWL generated from DAG-Edit10 or (c) nice OWL generated by Protégé-
Plugin. Whatever choice is made, the exported data should contain the provenance
information of the source file and the conversion process used. SemVersion offers
ways to store such provenance information.

1.2.4 Use Case 4: Versioning in a Semantic Wiki

Stakeholder: Max Völkel (max@xam.de), Werner Thiemann

A wiki is a browser-based environment to author networked, structured notes,
often in a collaborative way. The project SemWiki11 aims at creating a semantic
wiki for personal note management. SemWiki extends the wiki syntax with means
to enter statements about resources, much like in RDF. In a traditional wiki, users
are accustomed to see and compare different versions of a page. In the semantic wiki

”
SemWiki”12 pages are just a special kind of resource and some attached properties.

Hence, a semantic diff has to be calculated
”
by hand”.

Data Set A typical personal wiki has up to 3000 pages with approximately 10
versions per page. Each page consists roughly of 50 statements. This leads to
approximately 1.5 million triples for a snapshot-based versioning system.

Versioning Requirements SemWiki users need ways to request a semantic diff
between two page-versions. As pages partly consist of

”
background statements”,

which do not belong to a particular page, SemWiki needs a model-based versioning
approach (R4.1). Sometimes users want to roll-back page changes, thus we need
the ability to revert to old states (R4.2). Additionally, users want to track each
statement: Who authored it, when has it been introduced, etc. (R4.3).

1.2.5 Use Case 5: Analysis of Wikipedia

Stakeholder: Denny Vrandecic (denny.vrandecic@aifb.uni-karlsruhe.de), Markus
Krötzsch, Max Völkel

An emerging research topic at AIFB is the analysis of changes in the Wikipedia13.
This use case is mostly similar to

”
Versioning the Gene Ontology”.

Data Set The Wikipedia contains roughly 1.500.000 articles across all language
versions.

10http://www.godatabase.org/dev/java/dagedit/docs/index.html
11http://semwiki.ontoware.org
12http://semwiki.ontoware.org
13http://www.wikipedia.org

KWEB/2004/D2.3.3.a/v1.0 June 6th, 2005 9

1. SEMVERSION – AN RDF VERSIONING SYSTEM

Versioning Requirements There are no obvious extra requirements.

1.2.6 Use Case 6: Analysis of the FOAF Vocabulary Defin-
ition

Stakeholder: Knowledge Web WP 2.3

Data Set The data set is to the Gene Ontology data, just much smaller. In
the FOAF case, all old versions of the vocabulary description (index.rdf) can
be obtained via a (human oriented) viewcvs interface14. There are 52 documents
accessible through that, e. g.

• 3 years ago: http://rdfweb.org/viewcvs/viewcvs.cgi/*checkout*/xmlns.
com/htdocs/foaf/0.1/index.rdf?rev=1.2&content-type=application/rdf+

xml

• some months ago: http://rdfweb.org/viewcvs/viewcvs.cgi/*checkout*/
xmlns.com/htdocs/foaf/0.1/index.rdf?rev=1.49&content-type=application/

rdf+xml

It should be possible to automatically get the different versions from the CVS.

Versioning Requirements This use case is rather hypothetical, as no WP 2.3
member has this currently on his/her research agenda. However, obvious research
questions would be:

• In Aug 2004, what did http://xmlns.com/foaf/0.1/ claim was the rdfs:domain
of foaf:homepage?

• When did FOAF stop having an rdfs:domain of foaf:homepage that was
something other than rdfs:Resource?

• When did foaf:name become marked as ’stable’? Ideally: And where was this
announced?

All these research questions fall into the category of queries over the full versions
data and are thus comparable to R3.3.

14http://rdfweb.org/viewcvs/viewcvs.cgi/xmlns.com/htdocs/foaf/0.1/index.rdf

10 June 6th, 2005 KWEB/2004/D2.3.3.a/v1.0

D2.3.3.a SemVersion – Versioning RDF and Ontologies IST Project IST-2004-507482

1.3 Data Management Design

A versioning system has generally two main parts. One deals with general data
management issues, the other part with versioning specific functionality such as cal-
culating the difference between two versions. We first present the data management
parts and then the ontology specific versioning functions.

The data management parts can be used no matter which ontology language is
used – as long as the data model is encoded as RDF. RDF encoding of data is crucial
in order to have a significant re-use of software across ontology languages. We now
present some arguments for this claim. A more detailed discussion can be found in
the Knowledge Web Deliverable D231 [WW04].

RDF as the structural core of ontology languages The most elementary
modelling primitive that is needed to model a shared conceptualisation of some
domain is a way to denote entities and to unambiguously reference them. For this
purpose RDF uses URIs, identifiers for resources, that are supposed to be globally
unique. Every ontology language needs to provide means to denote entities. For
global systems the identifier should be globally unique. Having entities, that can
be referenced, the next step is to describe relations between them. As relations are
semantic core elements, they should also be unambiguously addressable. Properties
in RDF can be seen as binary relations. This is the very basic type of relations
between two entities. More complex types of relations can be modelled by defining
a special vocabulary for this purpose on top of RDF, like it has been done in OWL.

The two core elements for semantic modelling, mechanisms to identify entities
and to identify and state relationships between them, are provided by RDF. Ontol-
ogy languages that build upon RDF use these mechanisms and define the semantics
of certain relationships, entities, and combinations of relationships and entities. So
RDF provides the structure in which the semantic primitives of the ontology lan-
guages are embedded. That means we can distinguish three layers here: syntactic
layer (e.g. XML), structural layer (RDF), semantic layer (ontology languages).

The various ontology languages differ in their vocabulary, their logical founda-
tions, and epistemological elements, but they have in common that they describe
structures of entities and their relations. Therefore RDF is the largest common de-
nominator of all ontology languages. RDF is not only a way to encode the ontology
languages or just an arbitrary data model, but it is a structured data model that
matches exactly the structure of ontology languages.

1.3.1 Version Data Management

The general idea is the re-use of data management functionality across ontology
languages. The relations between different versions of an RDF model or ontology

KWEB/2004/D2.3.3.a/v1.0 June 6th, 2005 11

1. SEMVERSION – AN RDF VERSIONING SYSTEM

are the same, regardless of the semantics used.

Data management deals with storage and retrieval of chunks of data. In our
case, the smallest unit of data we store and retrieve is a model (also called ’triple
set’). A model is a set of RDF triples. A versioned model consists of a triple set for
the content plus an arbitrary number of statements about this model. We thus call
this model based versioning in contrast to statement based versioning.

SemVersion’s data model (depicted in Fig. 1.3) was basically derived from the
requirements of the MarcOnt use case (Sec. 1.2.1) and fulfills also the other use
cases needs. Only the rather statement-oriented versioning requirements from the
use case 2 remains difficult to integrate.

SemVersion has a repository of projects. They can be created, listed and
removed from the repository. A project can hold a number of versioned models.
A versioned model is the container for a single RDF model or ontology under version
control. A versioned model has a root version and also knows all other versions
that are direct or indirect descendants of the root version. Versioned models are
quite an important concept and give the user the ability to retrieve the right version
by e. g. listing all branches or simple getting the most current

”
main”branch version.

A version is the most central concept. It is a model decorated with all kinds
of metadata. A version knows where it cames from (it parents), has a branch, a
label and optionally even a comment and a provenance URI. The user can commit
a model as the successor of a version; create a new version by merging two existing
models or commit a diff. Committing diffs is useful, if the models become really
large and change only litte – a use case we are likely to experience in the Gene
Ontology scenario.

Typically a new user starts by creating a new project and then adds a RDF
model to it. This model is then treated as the first version of a

”
versioned model”.

The initial RDF model was probably created on the users desktop with third-party
ontology engineering tools.

A versioned model consists of different versions that have attributes and relations.
Common attributes are time stamp, branch label, status of acceptance. Predecessor
relationships indicate the history path. This meta-information about versions can be
managed independent of the versioned artefacts themselves. Thus this management
layer can be designed very flexible and reusable. As every version can be identified
via an URI, one can make arbitrary statements in RDF about them. The concepts of
branches, acceptance status and version dependencies can then be represented easily
in RDF. SemVersion uses this distinction of stored RDF models and statements
about them. Realised as statements about versions is e. g. the concept of ontology
engineering projects. Such projects are simple sets of versioned models and give the
user a better ability to manage the different ontologies in progress.

Users can store arbitrary RDF encoded metadata objects for each project, ver-

12 June 6th, 2005 KWEB/2004/D2.3.3.a/v1.0

D2.3.3.a SemVersion – Versioning RDF and Ontologies IST Project IST-2004-507482

Repository

Project
Project

VersionedModel

VersionedModel

VersionedModel

Version

Version Version

Branchlabel

Content
UserdefinedMetadata

UserdefinedMetadata

Figure 1.3: Data Model for RDF Versioning

sioned model and most important for each version. This data is stored in the RDF
storage layer and linked by RDF statements to the versioning artefact it belongs
to. Metadata models are also URI-addressable. This metadata strategy enables a
good re-use of the SemVersion system, as e. g. the evolution log of an ontology
engineering tool could be assigned to a version with this mechanism.

1.4 Versioning Functionality Design

Versioning functionality deals with ontology language specific functionality.

1.4.1 Structural Diff

Although the structural diff is the same for all ontology languages, we describe it
here for sake of consistency. The structural diff is simply the set-theoretic difference
of two RDF triple sets. Libraries such as Jena have built-in functions to compute
this set-difference. Rdf2Go also offers a native implementation. An example for a
structural diff can be found in Fig. 1.4.

The diff function d(A, B) → 〈a(A, B), r(A, B)〉 is a non commutative func-
tion from two triple sets (A, B) to two triple sets of added (a(A, B)) and removed
(r(A, B)) statements, with a(A, B) = B − A = B\(A ⋂

B) and r(A, B) = A− B =
A\(A ⋂

B). Such diffs can be computed by simple set arithmetics for triple sets

KWEB/2004/D2.3.3.a/v1.0 June 6th, 2005 13

1. SEMVERSION – AN RDF VERSIONING SYSTEM

version A:
a rdfs:type c

b rdfs:type c

c rdfs:subClassOf d

version B:
a rdfs:type d

b rdfs:type d

c rdfs:subClassOf d

e rdfs:type d

added:
a rdfs:type d

b rdfs:type d

e rdfs:type d

removed:
a rdfs:type c

b rdfs:type c

Figure 1.4: Example for a Structural Diff

that contain only URIs and literals, as shown in [KSO02]. Blank nodes cause some
problems here, as discussed in Sec. 1.4.3.

1.4.2 Semantic Diff

The semantic difference has to take the semantics of the used ontology language
into account. It is therefore not possible to write a generic algorithm for this. An
intuitive way to understand the concept of a sematic diff goes like this: Let’s assume
we have RDF Schema as our ontology language. Further we have two models A and
B, which express two versions of an RDF Schema. Now, in order to compute the
semantic diff, we use RDF Schema entailment on model A and infer all triples we
can (Inf(A)). Then we do the same for model B (Inf(B)). Now we calculate a
structural diff on Inf(A) and Inf(B). This not the same as the structural diff
between model A and B. Fig. 1.6 illustrates the semantic diff under RDF Schema
entailment semantics.

A possible way to compute a semantic diff is thus to materialize the complete
entailment (transitive closure) and then perform a structural diff. For RDF Schema
the calculation of the transitive closure can be re-used from the Jena framework.
However, in certain cases this might not be doable, especially when the models grow
really large. The calculation of a semantic diff can be accomplished by a language
specific reasoner or by a language specific set of rules. These rules can be formulated
in a language like TRIPLE as demonstrated in [SD]. Initially we provide support
for RDF Schema. An extension to OBOL is planned.

If the structural diff of two models is empty, then the semantic diff must also
be empty. The inverse is not necessarily true: There might be two different RDF
models which encode the same semantic model.

14 June 6th, 2005 KWEB/2004/D2.3.3.a/v1.0

D2.3.3.a SemVersion – Versioning RDF and Ontologies IST Project IST-2004-507482

version A:
a rdfs:type c

b rdfs:type c

c rdfs:subClassOf d

version B:
a rdfs:type d

b rdfs:type d

c rdfs:subClassOf d

e rdfs:type d

added:
e rdfs:type d

removed:

Figure 1.5: Example for a Semantic Diff under RDFS semantics

version A:
a rdfs:type c

b rdfs:type c

c rdfs:subClassOf d

version B:
a rdfs:type d

b rdfs:type d

c rdfs:subClassOf d

e rdfs:type d

added:
e rdfs:type d

removed:

Figure 1.6: Example for a Semantic Diff under RDFS semantics

1.4.3 Blank Nodes and the Diff

Blank nodes15 cause some problems in computing the structural diff, as we have no
knowledge about the relation (equal or not?) between two blank nodes form different
models. The RDF semantics dictate to treat them as different. In a versioning
context, this leads to the unwanted fact that the diff between a model and itself is
not empty, if it contains blank nodes.

As a work-around we invented the concept of blank node enrichment, which
attaches artificial inverse functional properties to every blank node. This changes
nothing to the RDF semantics but helps to identify equal blank nodes across models.

Most RDF processing tools will leave this information intact. In the MarcOnt
scenario (c. f. Sec. 1.2.1), a dedicated ontology builder is used, so this constraint
can be enforced. In SemVersion, the content of every version is blank node enriched
before it is stored in the RDF storage layer.

However, if no blank node enrichment is present, we still have to offer a good
versioning system. We can distinguish five cases of blank node differences across
models:

• The blank node appears in exactly the same statements in both versions. Then
it is semantically safe to assume blank node identity.

• If only additional statements have been added (the previous version’s state-
ments are all entailed by this versions statements), one can also conclude blank

15Sometimes also called ”bnodes” – but they have nothing to do with b-trees.

KWEB/2004/D2.3.3.a/v1.0 June 6th, 2005 15

1. SEMVERSION – AN RDF VERSIONING SYSTEM

A

A
′

A
′′

B

B
′

B
′′

1

Figure 1.7: A sample version tree

node equality without problems.

• If the blank node has been extended monotously but in different ways, what
does this mean? Are the blank node identifiers

”
:1” and

”
:3” referring to the

same object? Has
”
Max” know two phone numbers or are there two Maxes

know? In general, it seems better to treat the blank nodes as different in this
example. Example:

version A:
_:1 :hasName "Max"

version B:
_:3 :hasName "Max"

_:3 :hasPhone "123"

_:5 :hasName "Max"

_:5 :hasPhone "456"

added:
_:3 :hasName "Max"

_:3 :hasPhone "123"

_:5 :hasName "Max"

_:5 :hasPhone "456"

removed:
_:1 :hasName "Max"

• Almost as ambiguous is the case when some properties have been removes and
some have been added. Here again, no equality should be assumed.

• The original blank node could appear only in reduced and extended models.
Here again, no equality should be assumed.

Unfortunately, blank nodes are used in practice. They are used in OWL for
property restrictions and in FOAF to denote persons.

1.4.4 Branch and Merge

Branch and merge operations allow ontology engineers to follow multiple develop-
ment paths in parallel. A branch operation works like a commit, but the new version
is considered to be in a new branch, marked by a different branch label.

16 June 6th, 2005 KWEB/2004/D2.3.3.a/v1.0

D2.3.3.a SemVersion – Versioning RDF and Ontologies IST Project IST-2004-507482

For merge we distinguish a merge between two arbitrary versions and the merging
of two branches. It is possible to merge arbitrary versions, no only those at the end
of a branch. A merge of version A and version B is simply the set union of the triple
sets.

Merging two branches is different. First we look at the branch point c, which
is defined as the most recent common version of the two branches. Such a version
always exists, as branches can only be created by committing a version to an existing
version. We also take two versions from the different branches, in most cases the
most recent ones, and call them a and b. Consider the example version tree given in
Fig. 1.7. Here c = A, a = A′′, b = B′′. In order to merge b back into a we compute
the diff(c, b) and apply it to a.

1.4.5 Conflict Detection

RDF models themselves are never in a conflict state. But a diff between two models
can indicate a conflict on the ontology layer. SemVersion uses a simple conflict
detection heuristic, that detects if a diff adds statements about a resource that was
present in c, but has been removed on its way to a. This means, the URI of a
resource was used in triples from c, but no triple in a contains this URI.

1.4.6 Query Language Extension

WP 2.3 proposed an extension to RDQL and SPARQL to enable the querying of ver-
sions through bi-temporal database features such as valid-time and transaction-time
and context information. The proposal was merely practical and did not include
the intended semantics associated to the query language extensions, which in fact
triggered some debate in the room. Our viewpoint was from a database perspec-
tive considering that both RDQL and SPARQL are SQL-like query languages for
semistructured/graph-based data. The point to be discussed is that SPARQL could
simulate or include features available in SQL3 such as nested/correlated queries
with the required closure of query results, include bi-temporal data such as found in
temporal SQL, and possibly include procedural capabilities such as calls to external
functions, use of surrogate methods, use of path expressions as in object oriented or
graph databases and so on.

1.5 Implementation

Note: Different from the approach described in [WW04], we now aim at creating a
pure Java library.

KWEB/2004/D2.3.3.a/v1.0 June 6th, 2005 17

1. SEMVERSION – AN RDF VERSIONING SYSTEM

At startup time an SemVersion server loads its root data model from a configured
RDF store and caches it in memory. The root model contains information about
projects, versioned models, their versions and other metadata. User-defined meta-
data is stored as separate RDF models in the RDF store. Only time stamps and
branch labels are stored directly in the SemVersion root model. This reduces the
SemVersion data layer to a clean layer with statements about versioning artefacts.
Diffs are calculated on-the-fly in the SemVersion server, but could be cached.

1.5.1 Storage Layer Access

An ontology versioning system should scale in many dimensions. It should allow a
large number and size of ontologies. This implies a scalable storage architecture. If
the ontologies become large, it is undesirable to download them first and query or
manipulate them locally. There already exist scalable RDF stores with remote query
and update functionality. SemVersion utilized rdf2go16, a side-project of SemVersion
which is described on page 20. It abstracts away the triple store implementation
and gives the user a simple Java-centric API for model changes. The storage layer
access is implemented in the class TripleStore which offers means to get models.
The TripleStore uses a ContextModel for it’s persistence. The identification URI for
a model is used as the context URI in the quad model. All models are only proxies
for the ContextModel. Currently, SemVersion uses YARS to store it’s data.

1.5.2 Handling Commits

The new version will simply be stored – this guarantees that the retrieval will give
the user back what she checked in. More sophisticated storage mechanisms could
be developed, but the real challenge in ontology versioning is not storage space but
the management of the distributed engineering processes within a heterogenous tool
environment. The new model is send to the RDF store with a locally generated
URI, which is globally unique.

1.5.3 Generating globally unique URIs

The strategy for generating globally unique URIs is as follows: (i) The first part of
the URI is the URL the SemVersion server is running at. This reduces the problem
of generating globally unique URIs to generating locally unique URIs, assuming that
the same SemVersion server URL will not be used for different SemVersion server
ever. To soften this constraint, (i)) the current system time for the server, measured
in milliseconds is also made a part of the generated URL. Thus the problem is
reduced to maintain an accurate server clock and never issue the same URI again

16http://rdf2go.ontoware.org

18 June 6th, 2005 KWEB/2004/D2.3.3.a/v1.0

D2.3.3.a SemVersion – Versioning RDF and Ontologies IST Project IST-2004-507482

in a given period of time (server clock may be off for minutes, but not months). To
issue different URIs at all times, (iii) an internal counter is added to the URI string.
The URI generator cannot guarantee uniqueness, but the likelihood for the same
URI being generated twice is really low.

1.5.4 RDFReactor

The general trade-off between the power of a strongly typed, object-oriented API
and the flexibility of having direct access to the underlying data exists as well in
the RDF and Java world. The open-source project RDFReactor17, which generates
data manipulation classes from an RDF Schema18, is used to give the user an object-
oriented access for many common functions like adding projects, setting the parents
of a version or storing the branch label. Parallel access to the stored RDF data is
always possible.

RDFReactor builds on RDF2GO. A longer paper about RDFReactor can be
found at http://xam.de/2005/05/rdfreactor.pdf.

Until now, RDFReactor has been downloaded over 70 times.

17http://RDFReactor.ontoware.org
18http://SemVersion.ontoware.org/2004/12/datamodel

KWEB/2004/D2.3.3.a/v1.0 June 6th, 2005 19

Chapter 2

RDF2Go

Rdf2Go1 is an abstraction over RDF triple and quad stores. It provides a software
layer to connect a Java application with some of the most popular Java frameworks
for the Resource Description Framework (RDF)2. The basic idea is depicted in Figure
2.1.

The current version 1.0 offers support for the triple store Jena 3 2.2 and the quad
stores YARS 4 ref. 1217 and NG4J 5 V0.4 (which builds on Jena).

2.1 What is RDF2Go?

Rdf2Go is a lightweight adapter framework between existing RDF triple and quad
stores and Java Applications. While there are many implementations of the Resource
Description Framework in Java, each of them has it’s pros and cons and it’s difficult
to choose the right one for your purposes among them. Using Rdf2Go it’s easy to
change the underlying triple or quad store without major effects for your application.
Java applications may use the Rdf2Go API to remove compile-time and run-time
dependencies on any particular RDF implementation.

A similar project has been created by the Apache Software Foundation and is
known as

”
jakarta commons logging6”.

Rdf2Go is so easy to use, that it might even be used in courses like
”
Semantic

Web for Java Developers”. It’s main goals though, have been flexibility and ease-of-
use.

1http://rdf2go.ontoware.org
2http://www.w3.org/RDF/
3http://jena.sourceforge.net
4http://sw.deri.org/wiki/YARS
5http://www.wiwiss.fu-berlin.de/suhl/bizer/ng4j/
6http://jakarta.apache.org/commons/logging/

20

D2.3.3.a SemVersion – Versioning RDF and Ontologies IST Project IST-2004-507482

Jena 2.2YARS KAON

rdf2go

NG4J

rdf2go-arch

Java application

Figure 2.1: Rdf2Go and existing RDF triple (and quad) stores

Figure 2.2: Rdf2Go Type System and the Jena adapter classes as an example

KWEB/2004/D2.3.3.a/v1.0 June 6th, 2005 21

2. RDF2GO

2.2 Working Example: Simple FOAF via RDF2Go

Imagine you want to write your own FOAF7 file using Rdf2Go. Here we provide a
simple example how to do this.

Because all RDF frameworks use different configuration settings when construct-
ing a model, it’s necessary for Rdf2Go to use different constructors. In each of the
impl-Packages for the RDF stores you can find a Model implementation.

When we want to instanciate a new Rdf2Go model using Jena as the underlying
RDF framework, we have to start with the following line of code. Right now we don’t
want any inferencing, so we put it off.

// no inferencing
Model model = new ModelImplJena22(false);

We want to state something about persons and relationships between them using
the FOAF vocabulary. The next step is creating some URIs from this vocabulary,
so building statements with them later is much easier.

URI foafName = URIUtils.createURI("http://xmlns.com/foaf/0.1/name");
URI foafPerson = URIUtils.createURI("http://xmlns.com/foaf/0.1/Person");
URI foafTitle = URIUtils.createURI("http://xmlns.com/foaf/0.1/title");
URI foafKnows = URIUtils.createURI("http://xmlns.com/foaf/0.1/knows");
URI foafHomepage = URIUtils.createURI("http://xmlns.com/foaf/0.1/homepage");

With those URIs we now can start to state something about a person. While we
don’t have an URI for a person, we use a blank node (this is always done this way
in FOAF).

BlankNode werner = model.getNewBlankNode();

First we say some things about Werner - where his homepage can be found, what
his full name is and that he is a foaf:Person.

// N-TRIPLES Syntax:
// _:blankNodeWerner
// <http://xmlns.com/foaf/0.1/homepage>
// <http://www.blue-agents.com> .
model.addStatement(

werner,
foafHomepage,

URIUtils.createURI("http://www.blue-agents.com"));

7http://www.foaf-project.org/

22 June 6th, 2005 KWEB/2004/D2.3.3.a/v1.0

D2.3.3.a SemVersion – Versioning RDF and Ontologies IST Project IST-2004-507482

model.addStatement(werner, foafTitle, "Mr");
model.addStatement(werner, foafName, "Werner Thiemann");
model.addStatement(werner, RDF.type, foafPerson);

Then we do similar things with Max.

BlankNode max = model.getNewBlankNode();
model.addStatement(max, RDF.type, foafPerson);
model.addStatement(max, foafName, "Max Völkel");
model.addStatement(max, RDFS.seeAlso,
URIUtils.createURI("http://www.xam.de/foaf.rdf.xml"));

Now that we have introduced two persons, we can state that they know eachother.
We do this by using the foaf:knows property.

model.addStatement(werner, foafKnows, max);

While we added a lot of statement to the model by now, we yet don’t know how
we get this information back from the model. We will show a simple query methods
to do so here. We want to list all persons. Therefore we use a wildcard for the
subject (i.e. Variable.ANY).

Iterator<Statement> it =
model.getStatement(Variable.ANY, RDF.type, foafPerson);

We get back an Iterator over Statements. Finally we iterate over the query
results and print the persons URI (i.e. a blank node) and the name of the person
to standard out. To do this we have to do another query. This time we want any
object for the found person that have the property foaf:name. Subject, predicate
and object of a statement provided by the iterator can be accessed via get-methods.

while (it.hasNext()) {
Object person = it.next().getSubject();
System.out.println(person + " is a person");

// get foaf:name
Iterator<Statement> it2 = model.getStatement(person, foafName,

Variable.ANY);
while (it2.hasNext()) {

System.out.println(person + " has the foaf:name "
+ it2.next().getObject());

}
}

The full example can also be found in the package org.ontoware.rdf2go.example.

KWEB/2004/D2.3.3.a/v1.0 June 6th, 2005 23

2. RDF2GO

2.3 Architecture

Figure 2.1 shows how Rdf2Go interacts with common Semantic Frameworks and
RDF stores like Yars, Jena , NG4J or KAON8. Those underlying frameworks be-
come transparent for the application, which only communicates with the interfaces
provided by Rdf2Go.

The main package org.ontoware.rdf2go provides all those interfaces the appli-
cation developer might need to manipulate and query RDF data.

The org.ontoware.rdf2go.impl provides implementations of RDF specifics,
which don’t exist in Java and are independent of the underlying framework. Classes
herein also implement an adapter between ContextModel and Model and vice versa
and also cope with URI handling. The methods of those classes simplify the imple-
mentations of the adapters for the underlying frameworks

All other packages implement specific adapter classes to communicate with the
underlying RDF store.

While providing adapters for the most widely used triple and quad stores, any
contributors may find it easy to write implementations for the RDF framework of
their choice due to the simple API.

As Rdf2Go strives to be a unifying API, it cannot make reasonable assumptions
about the nature of the underlying API’s exceptions. Right now best way to deal
with these exceptions seems to be to throw them as a generic type Exception to the
Rdf2Go user. Hence most methods have a throws java.lang.Exception clause.
In future versions Rdf2Go might have its own exception hierarchy which catches
the exceptions of the underlying layer and return its own exception objects instead.

2.4 The API

Model and ContextModel are the main interfaces for triple or quad store usage.
They provide access to a RDF model.

The query results have to be in a form which easily can be accessed by Java
applications. Therefore the classes Statement and ContextStatement provide a
simple access to the RDF statements.

2.4.1 Model and ContextModel

We already saw how to create a model in the working example. For the sake of
completeness we list all existing Model creation possibilities here.

8http://kaon.semanticweb.org/

24 June 6th, 2005 KWEB/2004/D2.3.3.a/v1.0

D2.3.3.a SemVersion – Versioning RDF and Ontologies IST Project IST-2004-507482

//Jena without inferencing
Model model = new ModelImplJena22(false);
//Jena with RDFS inferencing
Model model = new ModelImplJena22(true);
//Yars
Model model = new ModelImplYars();
//NG4J
Model model = new ModelImplNG4J();

The methods can be divided into the following groups:

Model Manipulation

• addStatement(Object subject, URI predicate, Object object)

• addStatement(Object subject, URI predicate, String literal, String language-
Tag)

• addStatement(Object subject, URI predicate, String literal, URI datatype-
URI)

• addAll(Model other)

• removeStatement(Object subject, URI predicate, Object object)

• removeStatement(Object subject, URI predicate, String literal, String lan-
guageTag)

• removeStatement(Object subject, URI predicate, String literal, URI datatype-
URI)

• removeStatement(Statement statement)

• getNewBlankNode()

The add and remove statements are straightforward. getNewBlankNode() pro-
vides an overall class for blank node treatment, because the RDF stores cope differ-
ently with those.

Model Querying and Existence Checks

• query(String queryString)

• getStatement(Object subject, Object predicate, Object object)

KWEB/2004/D2.3.3.a/v1.0 June 6th, 2005 25

2. RDF2GO

• getStatement(Object subject, Object predicate, Object literalValue, Object
literalAttribute)

• getStatements()

• contains(Object subject, Object predicate, Object object)

• contains(Statement statement)

The query and getStatement concepts are explained in depth in 2.4.2). The
contains-methods provide a simple way to check if a statement exists in the current
model.

Debugging Support

Rdf2Go uses Apache Jakarta Commons Logging9. The underlying logging im-
plementation used is log4j10. The configuration for the logging can be found in
/src/log4j.properties.

Additionally the following methods are provided by the Model.

• size()

• dump()

• getUnderlyingModelImplementation()

While size() gives you an idea how many statements can be found in a model,
the dump() method prints the whole content to the logger instance of the imple-
mentation. For some special purposes it might be necessary to get the model of the
underlying layer. This is provided by getUnderlyingModelImplementation().

Another rather unintuitive feature at first sight is the ability to store object
references at runtime in the model. They enable the model to act as a central facade
for all kinds of usage. This feature was introduced to be used in RDFReactor.

• setProperty(URI propertyURI, Object value)

• getProperty(URI propertyURI)

9http://jakarta.apache.org/commons/logging/
10http://logging.apache.org/log4j/docs/

26 June 6th, 2005 KWEB/2004/D2.3.3.a/v1.0

D2.3.3.a SemVersion – Versioning RDF and Ontologies IST Project IST-2004-507482

Type System

One of the central aspects of Rdf2Go is to map the RDF type system to the
Java type system. The mapping is simple and should be intuitive for regular Java
developers. It goes as follows:

URI is mapped to java.net.URI.

Plain Literal is mapped to java.lang.String.

Literal with a Language Tag is mapped to org.ontoware.rdf2go.LanguageTagLiteral
which has two methods: public String getValue() and public String

getLanguageTag().

Literal with a Datatype URI is mapped to rdf2go.ontoware.org.DatatypeLiteral
which also has two methods: public String getValue() and public URI

getDatatype().

Blank Node has only the semantics of being either the same (equal) or not the
same as another blank node. In Rdf2Go this mapped to the marker in-
terface org.ontoware.rdf2go.BlankNode. The equals-method should work
correctly.

Variables are used only in queries. Rdf2Go maps wildcards which can be used in
triple (or quad) search patterns to instances of org.ontoware.rdf2go.Variable.
As there exists only one wildcard there is only one instance: org.onto-

ware.rdf2go.Variable.ANY.

Figure 2.2 shows the type system and the Rdf2Go adapter classes for Jena.

2.4.2 Queries

Rdf2Go offers two ways to query a model. Both return an Iterator<Statement>.
This is a new feature of Java 5.0 called

”
generics”. It basically ensures that each

object returned by next() is of type Statement. Iterators as query result have the
advantage of low memory consumption11.

Queries can be plain text, which is interpreted by the underlying triple or quad
store implementation. This offers flexibility, until a standard query language for
RDF emerges.

The second query option has less expressivity but clearly defined semantics. It
uses only triple (or quad) search patterns. A search pattern has for each section of
a triple – namely subject, predicate and object (and context) – either a concrete

11This idea was provided by Andreas Harth

KWEB/2004/D2.3.3.a/v1.0 June 6th, 2005 27

2. RDF2GO

value or a wildcard. The iterator returns all elements which fulfill the given search
pattern.

2.5 How to get started

Rdf2Go is simple to install and simple to use.

Rdf2Go can be downloaded from ontoware.org 12. Right now it comes in 4
flavours. Pure, with Yars, with Jena or with NG4J. There is also a developers CVS,
which can be found at ontoware.org 13

Rdf2Go is released under the GNU Lesser General Public License (LGPL),
Version 2.1, Feb. 1999. We reserve the right to release Rdf2Go in parallel under
different licenses.

For support, please feel free to post to the forum at ontoware.org 14 – we will
respond quickly and your feedback is very welcome.

12http://ontoware.org/frs/?group_id=37
13http://ontoware.org/scm/?group_id=37
14http://ontoware.org/forum/forum.php?forum_id=143

28 June 6th, 2005 KWEB/2004/D2.3.3.a/v1.0

Chapter 3

Versioning Ontology Languages
with SemVersion

In this section we explain how SemVersion can be used to build an ontology version-
ing system for a particular ontology language. The first step to take is to choose an
RDF encoding for the ontology language. This should be possible for all ontology
languages. In fact, for many languages an RDF encoding is already specified (e. g.
OWL, OBOL and Topic Maps).

We can reuse the complete version data management infrastructure of SemVer-
sion, that includes managing projects, versioned models, versions and metadata for
each of these concepts. Some basic versioning functions can also be used out-of-the
box such as retrieve, commit and branch.

The only language specific function of SemVersion is the semantic diff. Ontol-
ogy language specific systems built on top of SemVersion have to change one line of
code and provide an appropriate implementation of a SemanticDiffEngine. In the
class SemVersion we have the method

public Diff getSemanticDiff(Model model1, Model model2) {

// TODO Adapt this line to other Ontology Languages
SemanticDiffEngine sde = new RDFS_Diff(); // OBOL_Diff();

TripleStore ts = svi.getTripleStore();
try {

return sde.getSemanticDiff(ts, model1, model2);
} catch (Exception e) {

throw new RuntimeException(e);
}

}

29

3. VERSIONING ONTOLOGY LANGUAGES WITH SEMVERSION

The SemanticDiffEngine has only one method and should thus be easy to imple-
ment.

public interface SemanticDiffEngine {

public Diff getSemanticDiff(TripleStore ts, Model a, Model b)
throws Exception;

}

SemVersion provides RDF Schema semantic diff. The usage of RDFS version-
ing will be further discussed in the deliverable D2.3.5.a

”
Integration of Consensus

Making Environment with RDF versioning system”.

Furthermore, a specific versioning system could use the ’user defined metadata’
functionality of SemVersion for storing specific metadata like access rights, degree
of agreement, mappings between versions etc.

30 June 6th, 2005 KWEB/2004/D2.3.3.a/v1.0

Chapter 4

How To Use SemVersion

Probably the best way to explain how to use the Java library SemVersion is to show
real source code. In this chapter we get practical and show a variety of commented
(!) source code fragments. A possible typical work session with SemVersion involves
the following steps:

• Start SemVersion

• Log in with username and password and obtain a session.

• Get, list or create a VersionedModel.

• Get most recent or list all Version objects.

Read or update a versions metadata

Commit a new model as a child-version

• End session

4.1 Typical Actions

Commit initial model

// log in

Session userSession = semVersion.login("tom", "password");

// get VersionedModel by label

VersionedModel vm = userSession.getVersionedModel("Gene Ontology");

// obtain an empty Model

Model myFirstModel = userSession.getModel();

31

4. HOW TO USE SEMVERSION

// manipulate the model

URI tool = URIUtils.createURI("http://example.com/#Tool");

myFirstModel.addStatement(

URIUtils.createURI("http://semversion.ontoware.org"),

RDF.type,

tool);

// commit as first version

vm.commitRoot(myFirstModel, "version1");

// log out

userSession.close();

Commit a suggestion to a version

// log in

userSession = semVersion.login("joe", "password");

// get versionedmodel by name and fetch root

Version root = userSession.getVersionedModel("Gene Ontology").getRoot();

// get a copy of the content

Model rootModel = root.getContent();

// manipulate the copy

rootModel.addStatement(

URIUtils.createURI("http://semversion.ontoware.org"),

RDFS.label,

"rdf-based versioning tool");

// commit the new version as a suggestion to the root verions

root.commit(rootModel, "version2", true);

Calculating Diffs

Version previousMainVersion = recentMainVersion.getFirstParent();

// get real model content of both versions (actually a copy of it)

Model recentMainModel = recentMainVersion.getContent();

Model previousMainModel = previousMainVersion.getContent();

32 June 6th, 2005 KWEB/2004/D2.3.3.a/v1.0

D2.3.3.a SemVersion – Versioning RDF and Ontologies IST Project IST-2004-507482

// calculate diff between the models

Diff diff = semVersion.getSemanticDiff(recentMainModel,

previousMainModel);

// Print out the number of added and removed Statements

System.out.println("Added: " + diff.getAdded().size());

System.out.println("Removed: " + diff.getRemoved().size());

4.2 Administration

Creating a user

// prepare server and create users

SemVersion semVersion = new SemVersion();

semVersion.createUser("admin", "password");

semVersion.createUser("tom", "password");

semVersion.createUser("joe", "password");

Create a versioned model Here an administrator creates a
”
VersionedModel”

for the Gene Ontology.

// prepare versioned model

Session adminSession = semVersion.login("admin", "password");

adminSession.createVersionedModel(

URIUtils.createURI("vm://1"), // URI

"Gene Ontology", // label

new Date(), // valid from now on

ValidTime.NOW); // valid forever

adminSession.close();

4.3 Usage and Implementation Notes

URIUtils is a simple helper class that creates a URI without declaring the throwing
of an exception. If the string is not a valid URI, the method createURI will throw
an (undeclared) RuntimeException.

Blank node enrichment is integrated into the model layer. SemVersion wraps all
rdf2go.Model instances in a SessionModel. These perform blank node enrichment
automatically. Note that currently the blank node identifiers are not used in diff
calculation (yet)

KWEB/2004/D2.3.3.a/v1.0 June 6th, 2005 33

4. HOW TO USE SEMVERSION

4.4 SemVersion Usage Examples

How can SemVersion be used to solve he problems outlined in the requirements
section 1.2? We present versioning for the MarcOnt scenario and briefly explain
what can be done with the Gene Ontology.

4.4.1 Versioning for MarcOnt

SemVersion can manage different branches of versions. Suggestions to the main
branch are modelled as different branches, which can evolve separately. Snapshots
of the main ontology with suggestions applied are created realised by merging the
different branches and showing the user the merged version. Mappings between
different versions can be stored as metadata of the version for which the backward-
mapping is required. As every version can be identified by an URL, it is easy to
discuss about them, e. g. reference them in a forum. As URLs are also URIs one
can also express arbitrary statements about them in RDF.

4.4.2 Versioning the Gene Ontology

This will be the most exciting part of SemVersion’s near future. Until now, the exact
queries to ask are not known and even the data set is not prepared. SemVersion now
has a solid data storage, which will hopefully enable us to study the Gene Ontology
as we wish.

4.5 Conclusion

SemVersion can handle RDF versioning and allows easy extension for other ontology
languages. The architecture is based on Rdf2Go and RdfReactor. Both choices
helped to keep the programming flexible and fast. We can now exchange Yars
by NG4J with a single line of code to change. This offers a cost effective way to
experiment with even more triple (or quad) stores, until a working solution is found.

The biggest challenge for SemVersion is scalable reasoning and we are looking
forward to upcoming solutions.

34 June 6th, 2005 KWEB/2004/D2.3.3.a/v1.0

Bibliography

[cre01] Creating the gene ontology resource: design and implementation. Genome
Research, 11(8):1425–1433, 2001.

[KSO02] Atanas Kiryakov, Kiril Simov, and Damyan Ognyanov. Ontology middle-
ware: Analysis and design. Technical report, IST Project IST-1999-10132
On-To-Knowledge, 2002.

[MB04] Carole A. Goble Yolanda Gil Michael Ashburner Judith A. Blake
J. Michael Cherry Midori A. Harris Suzanna Lewis Michael Bada,
Robert Stevens. A short study on the success of the gene ontology. J.
of Web Sem 1(2), pages 235–240, 2004.

[RSG] Phillip Lord Robert Stevens, Chris Wroe and Carole Goble. Ontologies in
bioinformatics.

[SD] Michael Sintek and Stefan Decker. Triple - an rdf query, inference, and
transformation language.

[sub] Tigris.org, open source software engineering.

[WW04] York Sure Vincent Schickel-Zuber Walter Binder Vassilis Tzouvaras Diego
Ponte Chiara Zini Marco Cruciani Matteo Bonifacio Sebastian Ryszard
Kruk Marcin Synak Wolf Winkler, Max Völkel. D2.3.1 specification of a
methodology for syntactic and semantic versioning. Technical report, 12
2004.

[Zhd05] Krummenacher R. Henke J. Fensel D. Zhdanova, A.V. Community-driven
ontology management: Deri case study. In Proc of the IEEE/WIC/ACM
International Conference on Web Intelligence, 2005.

35

