
1

Filling the Gap: New Models for Systematic Page-based
Web Application Development & Maintenance

Carlos F. Enguix and Joseph G. Davis

Decision Systems Laboratory
Department of Business Systems, The University of Wollongong

Northfields Ave. Wollongong NSW 2522, Australia

cfe01@uow.edu.au, joseph_davis@uow.edu.au

Abstract
The current state of application development on the WWW is characterised by anarchy and ad hoc
methodologies. In recent years, various hypermedia methodologies have been proposed to facilitate the
deployment of Web applications. However, no standard methodology has emerged to cater the needs for a
systematic and methodological approach to complex and dynamic Web application development. This paper
presents the design and specification of a multi-paradigm model suited for representing the interaction in a
client-server environment of procedural, declarative, object-based, event-oriented and OO components,
suited especially for page-based Web applications.

Keywords: Page-based Web Application Development, Multi-paradigm Models, Implementation Models,
Client-server Interaction, Web Software Engineering

1. Introduction
The current state of application development on the WWW is characterised by anarchy and ad hoc
methodologies. Despite the increasing popularity of Web-based application production systems, no standard
methodology has emerged to cater the needs for a systematic and methodological approach to Web
application development. In recent years various hypermedia methodologies and CASE tools such as
OOHDM (Schwabe and Rossi 1998), W3DT (Bichler and Nusser 1996), AutoWeb (Paolini and Fraternali 1998) have
been proposed to facilitate the adaptation of the hypermedia world to the Web. However, it has been
observed that there is a clear impedance mismatch between the models represented in the hypermedia world
at the conceptual, navigational and presentation levels of abstraction and the models required for complex
and dynamic Web applications with procedural, declarative, event-oriented, OO and client-server
capabilities. The design of a multi-paradigm model suited for representing the interaction in a client-server
environment of procedural, declarative, object-based, event-oriented and OO components in page-based
(HTML-based) Web applications are proposed in this paper.

The paper is organised as follows: in section 2 we explain the factors that motivated us to define a new
framework and a new model specifically adapted for Web application development. In section 3 is presented
an overview of some of the most important Web-based software engineering models that are related to our
research. A multi-paradigm model suited for page-based-based Web applications is presented in detail in
section 4. Finally we conclude the paper with conclusions and directions for future research.

2. Motivation
At the end of the autumn session of 1998 we were finalising a research project which involved the design
and implementation of domain-specific object-relational database search engines (Enguix et al. 1998). The
prototype consisted of a demonstration of the construction of a schema-based object-relational database
search engine which focused on the Australian Universities domain. The architecture of the database search
engine is entirely based in the tight integration of logical and physical subsystems that interact, collaborate

2

and complement each other. Due to the complexity involved some kind of model was badly needed to depict
in an intuitive how client and server components interact and collaborate among each other. As a matter of
fact, we needed a graphical model capable of representing and integrating:
• Hypermedia behaviour inherited from HTML constructs
• Software engineering models and methodologies needed to depict either procedural, event-oriented,

object-based or object-oriented behaviour
• Identification, definition and distribution of client/server components

We investigated many hypermedia design models such as OOHDM (Schwabe and Rossi 1998), RMM (Isakowitz et

al.1995), W3DT (Bichler and Nusser 1996) and so on. We found out that structured hypermedia design
methodologies do not include implementation models in their final life cycle stages as implementation is
implicitly viewed generally in all of them as largely ad hoc. As we know, traditional software engineering
life-cycles do not incorporate hypermedia models.

This situation led us to work on a new multi-paradigm model that addresses the requirements mentioned
above, capable of presenting in an intuitive way how client-server Web applications can be developed in a
modular fashion. The model must support several software engineering paradigms that coexist, collaborate
and integrate to form a new complex hybrid environment which we may refer to as the “Web application
paradigm”. The richness of a Web application is such that it might require the interaction of declarative,
procedural, object-based and pure OO components that are executed in an imperative, declarative or event-
oriented environment.

An IDC white paper entitled as “Web Application Development Perspectives” McClure (1998) presents a
detailed survey of the current state of Web application development. This study attempted to provide a
forecast of emerging trends. It reported the following findings:
• General coding approach: the coding approach for the majority (85 %) of Web applications is a

combination of HTML pages with embedded scripts (page-based Web applications)
• Client-side components: the most important features required in Web applications were the use of

HTML, the use of JavaScript® and Java™ components in client Web browsers
• Current server-side components: a majority of Web developers deployed Web applications with Cold

Fusion Markup Language (CFML), server-side JavaScript®, JAVA™, PERL and C/C++ and the CGI.

This survey also underscored the lack of an intuitive, adaptive prototyping framework for the systematic
design, development, reuse and maintenance of Web applications. This paper addresses this problem and
focus on the design and specification of multi-paradigm graphical models especially suited for page-based
Web applications that typically interact with back-end databases.

3. Related Work
Some distinct approaches have influenced the current state-of-the-art in the Web application development
arena. On the one hand, the hypermedia world had a considerable impact on the design and implementation
of static page-based Web applications. On the other hand, software engineering principles and models have
been critical in the deployment of complex and dynamic Web applications. In reality, a Web application may
integrate seamlessly both hypermedia and software engineering principles and models. In this section we
present an overview of some of the more interesting Web-based information systems and software
engineering models suited for Web application design.

The WWW Design Technique (Bichler and Nusser 1996) is a design technique which enables to model both
structured and unstructured Web sites, supporting both static and dynamic components. The W3DT
methodology includes an intuitive graphical model suited for the deployment of Web sites which describes
design primitives such as sites, page, index, form, menu, link, dynamic link, etc.

The WebComposition model (Gellerson 1998) represents Web entities as component objects with a state and
behaviour associated with each entity. Components can model Web entities of any arbitrary granularity such

3

as individual links, a complete Web page, a Perl Script and so on. The WebComposition models file-based
resources into OO components which enables the reuse and maintenance of Web components but does not
address modelling the actual behaviour of Web applications in run-time environments.

An extension of UML for Web application design is presented in (Conallen 1998). A Web application is
considered as a specialised version of a client/server application due to the fact that connections between
client and server sides exist only during a page request. A set of new classes and association stereotypes are
created to model in an object-oriented way Web applications. Because a Web page may contain logical
components that are executed either on the client or the server side it can be represented in the model as two
different classes, one belonging to the stereotype class server page and the other to the client page. Variables
that are page scoped are modelled as attributes of the class and internal modules as methods. Stereotyped
classes specify hyperlinks (link), component availability (server and client component), represent specialised
Web pages (forms, framesets), destination of a Web page (target) and so on.

4. The WebApp Framework
Currently Web applications are characterised by their complexity inherited from the integration and
interaction of client/server components/subsystems and by the integration of hypermedia and software
engineering principles. As cited previously the WebApp framework proposes a multi-paradigm environment
that may include procedural, declarative, object-based, OO, event-driven components and so on. It also
proposes a formal or semi-formal multi-methodological approach that permits the combination of software
engineering and hypermedia models. Additionally, we consider as a critical necessity the design of an
intuitive model and suitable notations capable of representing the interaction of page-based client-server
Web applications. The WebApp framework addresses all these requirements in order to facilitate the
systematic design, implementation and maintenance of page-based Web applications.

Web applications typically call for a fine-grained prototyping framework. As a result, the extent of inter-
dependencies and interactions between the different phases and iterations, the prototyping life cycle for such
applications is quite complex. In our WebApp framework we propose a six-stage prescriptive life cycle
model for Web application development: requirements gathering, simulation modelling, architecture
modelling, implementation scenario analysis, formal modelling, implementation modelling. The last stage
involves the actual implementation of the application. High-level implementation details are shown with the
aid of two graphical models especially suited for page-based Web applications that serve as a basis for the
final implementation:

• WebApp TLNC: WebApp Top-Level Navigational Charts
• WebApp ALSC: WebApp Application-Level Structure Charts

As research in progress, we are trying to formalise all the phases involved in the WebApp framework life-
cycle. Our focus in this paper is, however, on the models obtained in the implementation phase. From our
experience, the models obtained in this phase facilitate the deployment and maintenance of Web
applications. Furthermore, we consider as a promising research direction the integration of these models into
Web Application IDEs and CASE tools.

4.1 WebApp TLNC: WebApp Top-Level Navigational Charts
WebApp TLNCs are used to show from a high-level perspective the hypermedia structure and organisation
of page-based Web applications. A WebApp TLNC shows in a compact and efficient way the hierarchies of
Web pages and the possible navigations between these in a Web application. The symbols represented in
TLNC are explained in detail in the following section 4.2.

Figure fig. 2 shows an example of a WebApp TLNC representing a Web application used in the development
of the object-relational search engine. The purpose of the application is to query entities associated to the
University domain, such as Faculty home pages, Staff member home pages, etc. The main_squery
application is frames-based and allows the selection of entities to be queried on the left hand-side frame via a
parameterised link. On the right frame is loaded a dynamically generated form which allows us to query the

4

selected entity when submitted, calling recursively to the same Web page that contains the form and
appending retrieved results to the end of the Web page. The retrieved results may allow us to navigate to the
Web pages associated to each entity retrieved or to a Web page associated to entities that are related to the
retrieved entity. Note that there is a clear distinction between a call/link process and a load process. This
feature allows us to specify in a simple and intuitive way the load of WebApp components in different target
WebApp containers (i.e. form_squery is called from the left-frame of the main_squery WebApp Web page
and loaded on the right-frame)

Figure 2. Example of a WebApp TLNC

A TLNC does not provide much implementation details. The purpose of TLNC is to serve as a basis for
further refinement. Application-level details such as parameter passing, client-server interaction and so on is
shown in WebApp Application-Level Structure Charts (WebApp ALSC).

4.2 WebApp ALSC: WebApp Application-Level Structure Charts
WebApp ALSC are similar in concept to procedural structure charts, in that the modularity of the application
and parameter passing is shown. In addition navigational paths can be derived from HTML form
submissions or following links. Taking into account that Web applications may contain OO, object-based,
declarative, procedural, event-oriented components either in the client or the server side, ALSC charts can be
adapted in order to represent in an intuitive way a multi-paradigm environment. In addition, we distinguish
three types of charts that facilitate the isolation of client and server sides and that depict the interaction
between both:
• Server-side: the focus is on the server-side as the majority of processes are executed on the server-side.

Client components are excluded from this chart showing in a very high-level of detail server-side
components. Server-side components may include page-based declarative Web applications (Informix
Web Data Director App Page Tags, Cold Fusion Markup Language), object-based/OO server-side scripts
(Server JavaScript®, Microsoft ASP), traditional CGI scripts, JAVA™ Servlets, dynamically loadable
executable modules (3/4 GL generated module) and so on. Server-side components normally interact
with relational/object-relational/OO DBMS or other legacy databases or may interact with distributed
modules/objects via DCOM, CORBA, RMI or RPC.

• Client-side: the focus is on the client-side, characterised by being event-oriented. The majority of
modules are internal to a Web application and are activated on the Web browser. This chart must show
all client-activated components and the interaction between them. Client-side components generally
include client-activated object-based scripts (JavaScript®, VBScript) and OO objects (JAVA applets,
ActiveX components). Client-side modules/objects augment the efficacy of server-side applications,
delegating some server functionality to client Web browsers.

• Client-Server interaction: both client and server sides are included, showing only top-level client-based
and server-side components. The components that are formed by integrating/collaborating both sides are

5

marked as C/S (Client/Server). The parts that are activated on the server-side are marked as S and the
parts that are triggered on the client-side are identified as C.

 A WebApp ALSC includes the following elements and the corresponding symbols, depicted in table 1:

 Symbol Notation Symbol Notation Symbol Notation

 Web Page

 Call/link process

 Explode symbol

 Frame

 Load process

 Data Parameter

 Form

 Generate process

 Control Parameter

 Applet/ActiveX Link Link

 Activation point

 Sub-component
list/set

 Plink&

 Parameterised link Ei Event

 Virtual Web Page

 Client-side Activated
Component

 Ci Condition

 Internal Active
Component

 Server-side Activated
Component

 { } List/Set of Elements/Objects

 External Active
Component

 Client-server side
Activated Component

 [] Optional Element/Object

 Table 1. List of elements/symbols included in WebApp Application-level Structure Charts

• WebApp Web Page: represents a Web page
component which is a container of other sub-
components

• WebApp Frame: a container of other page-
based components (Web page, Form). A
Frameset may contain an arbitrary number of
frames. By default we represent a frameset
with two frames associated

• WebApp Form: represents a single
application Web page with embedded forms.
By default we represent one form per Web
page.

• WebApp Applet/ActiveX: represents a Web
page component which contains embedded
JAVA applets or ActiveX components

• Sub-component list/set: includes a set of
object instances which are normally generated
dynamically. May include rows of data,
HTML table and lists, links, etc.

• Virtual Web Page: virtual unnamed Web
page generated dynamically. May include Web
pages generated by CGI scripts, Servlets,
procedural HTML blocks, etc.

• Internal Active Component: internal
subroutine, module or object embedded in
Web applications. Generally represents client-
activated objects such as JavaScripts, JAVA
applets and ActiveX components.

• External Active Component: external
subroutine, module or object called by a Web
application. Generally represents server-
activated objects such as Server-side
JavaScripts, CGI modules, DLLs, Servlets, etc.

• Load process: indicates the non-assisted
automatic load of components via declarative
statements. Used especially in WebApp frame-
components to indicate in which frame a Web
page is loaded.

• Call/link process: indicates automatic load of
components via reaction of active components
or via end-user interaction. May include calls
to internal and external active components
(subroutines, modules, objects) or active
components called by form submissions or by
following links/parameterised links or clicking
on any JAVA-based/ActiveX GUI object that
submits data to the server

6

• Generate process: normally references to
HTML components that are generated
dynamically (i.e. tables, lists, error pages, URL
indexes, etc.)

• Link: link to a URL. In order to provide
flexibility and semantics in the notation, we
can define any link stereotype contextual to the
current application being deployed (i.e. URL,
URL_Foreign_key, index_link, etc.)

• Parameterised link: a link that includes
parameters of the form of name/value pairs
(i.e. URL?variable_name=variable_value). In
order to provide flexibility and semantics in
the notation, we can define any parameterised
link stereotype contextual to the current
application being deployed. To distinguish
from plain links the stereotype name should
terminate with an ‘&’ symbol (i.e. Entity&,
Table&, etc.)

• Client-side Activated Component: includes
active components that are active on the client-
side and HTML-based components that are
entirely generated on the client-side.

• Server-side Activated Component: includes
active components that are active on the
server-side and HTML-based components that
are entirely generated on the server-side.

• Client-server side Activated Component:
includes active components, HTML-based
components (Web page, Form, Frame, sub-
component list/set, etc.) or entire Web
applications that are active or are formed by
interacting client and server sides

• Explode symbol: represents either a
module/subroutine that explodes into a more
detailed WebApp ALSC or a high-level
application object that explodes into a detailed
OO class diagram that may include state and
behaviour or separate state transition diagrams
(STD)

• Data Parameter: primitive data type,
constant, vector or object passed to/generated
by an active component (subroutine, module
or object), a form submission or a
parameterised link with the aim of passing
data between components

• Control Parameter: primitive data type,
constant, vector or object passed to/generated
by an active component (subroutine, module
or object), a form submission or a
parameterised link with the aim of passing
state information between components

• Activation point: either represents a condition
or an event that activates a given active
component (subroutine, module or object)
either procedurally or event-oriented

• Condition: represents an evaluation of the
state of control parameters or the values stored
in data parameters or both

• Event: includes end-user generated GUI
events (i.e. onSubmit form), non-assisted
automated GUI events (i.e. onLoad form) and
any other kind of event such as rules-based
and so on.

One of the most desirable features provided by WebApp ALSC charts is the capability of representing in a
simple and elegant way a multi-paradigm environment. Activation points may involve an imperative/object-
based/OO generated procedural condition or an object-based/OO generated event. An explosion point may
lead to a detailed WebApp ALSC or to a detailed OO class diagram.

The list of elements and symbols included in table 2 not only permits us to represent the majority of current
page-based Web applications that typically interact with back-end databases in a modular and intuitive way
but facilitates their maintenance as well. The distinction between internal and external active components is
critical for maintenance purposes. Internal components are embedded within Web pages whereas external
components may represent external dynamic link libraries, distributed objects and so on.

 Due to the fact that the HTTP protocol is a stateless protocol where connections between client and server
are open during a single operation and that HTML source code is interpreted sequentially from top to bottom,
we can distinguish the following most important events associated to client-server interaction in page-based
Web applications:

7

• OnLoad: represents the initial load of a Web page, which may be triggered by previous form
submission, the selection of a link/parameterised link and so on. The event is depicted in the ALSC as an
Activation point.

• OnReload: represents a recursive call to a given Web page which may be triggered by a form
submission, the selection of a parameterised link, etc. The event is represented in the ALSC as an
Activation point.

• OnSubmit: affects to form submissions. Data and/or control parameters are passed to the server-side.
The event is represented implicitly in the ALSC as a Call/link process and may include an Activation
point (i.e. data reformatting previous to form submission).

• OnClick: generally affects links/parameterised links although we may include buttons or any GUI object
associated to JAVA™ applets that transmit data to the server. In this case the event is represented
implicitly in a WebApp ALSC as a Call/link process.

This simple event model permits us to represent the interaction between client and server components on a
majority of page-based Web applications.

4.2.1 Client-Server Interaction WebApp ALSC
 The complexity of developing client-server Web applications partly resides in demarcating and identifying
when the server-side or client-side must be activated and how the two sides must collaborate. In general
terms, there are two kinds of collaboration between client and server side in typical Web applications:
• From server to client side: data is received from the server and processed a-posteriori by the client.

Examples may include dynamic generation of form objects, generation of tables or lists of row instances
retrieved from a DBMS, dynamic generation of URL links, etc.

• From client to server side: data is pre-processed on the client-side and sent to the server-side. Examples
may include validation and reformatting of data previous to form submissions.

Client-server interaction WebApp ALSC concentrate on the collaboration between the client and server
sides, therefore only top-level active modules/objects are shown. Any of these top-level modules/objects may
explode into more detailed client or server WebApp ALSC.

Figure fig. 3 shows an example of the final Client-Server interaction WebApp ALSC representing the
main_squery application. When the form is submitted query values are tested and reformatted a priori (E2).
A successful form submission will trigger a recursive call on the form_squery form component passing the
query parameters (form objects + hidden fields). The query parameters are evaluated (C1, C2) activating
server-side active components (C dynamic link libraries) that pre-process query parameters and execute
SQL3 queries returning dynamically generated table elements with data (C4, C5). At the same time the sub-
component list/set data is being generated (i.e. rows of data captured from a DBMS), a client active
component (JavaScript® module) retrieves the data, captures URL columns, reformats them and converts
them into hyperlinks (C3). If an error occurs while executing the query or retrieving data (C6) a dynamically
generated virtual page showing error information is displayed on the client Web browser. Parameterised
links (Next&, Prev&) that enable the retrieval of rows of data in groups of an arbitrary number can be
generated dynamically as well acting as a sliding window (i.e. Prev 25 Next 25).

5. Future Research Directions
The models proposed in this paper have been used in the development of Web applications with client
JavaScripts® and ILLUSTRA™ Web DataBlade applications currently known as Informix Web Data
Director. Having investigated a range of different technologies and tools for Web application development
(IDM 1999) we contend that the majority of these can benefit from the models proposed in the WebApp
framework. With respect to the automation of the design process, the idea is not to develop an isolated upper
CASE tool but to try to provide add-ons to popular CASE tools such as Rational Rose, Platinum Paradigm
Plus, Oracle Designer/2000, etc.. Another alternative is to provide add-ons to popular Web application
development IDEs & tools such as Oracle WebDB, NetDynamics, Cold Fusion, NetObjects, Informix Web
Data Director, etc.

8

Figure 3. Example of a Client-Server interaction WebApp ALSC

6. Conclusions
Two modelling notations are presented, WebApp Top-Level Navigational Charts and WebApp Application-
Level Structure Charts used to facilitate the systematic design and maintenance of complex page-based Web
applications. The former is used to provide a high-level logical map of the structure of page-based Web
applications. The latter supports a multi-paradigm notation and is used to show implementation details and
run-time behaviour, especially client-server interaction between software components.

This framework is likely to be of benefit to Web developers for a systematic Web application development
and maintenance process. It also fosters the reusability and optimisation of software components. Other
communities that may benefit from the research proposed in this article are Web designers,
analyst/programmers, project leaders/managers and end-users which may have the chance to have a better
understanding of the systems being deployed. This approach is sufficiently general to cater to the needs of a
wide-cross section of page-based Web application environments, tools and languages.

9

7. References
(Bichler and Nusser 1996)
Bichler, M. and Nusser, S., “Developing Structured WWW-Sites with W3DT”, Proceedings WebNet 96, San
Francisco, California, USA, October 1996
http://aace.virginia.edu/aace/conf/webnet/html/223.htm

(Conallen 1998)
Conallen, J., “Modeling Web Application Design with UML”, White Paper Conallen Inc, June 1998
http://www.conallen.com/ModelingWebApplications.htm

(Enguix et al. 1998)
Enguix, C. F., Davis, J.G., Ghose, A.K., "Database Querying on the World Wide Web" Decision Systems Laboratory,
Technical Report TR98/5/101, May 1998.
http://budhi/uow.edu/postgrad/carlos/tr98_5_101.htm

(Gellersen 1998)
Gellersen, Hans-Werner “Object-Oriented Web Engineering”, First International Workshop on Web
Engineering (WebE 98) WWW7 Conference, Brisbane Australia, 14 April 1998.
http://www.teco.uni-karlsruhe.de/~hwg/webe.html

(IDM 1999)
IDM, “Web Application Development Tools”, Intranet Design Magazine, March 1999
 http://idm.internet.com/tools.shtml#Head

(Isakowitz et al. 1995)
Isakowitz, T., Stohr, E.A., Balasubramanian, P., “RMM: A Methodology for Structured Hypermedia
Design”, Communications of the ACM Vol. 38 No.8, August 1995

(McClure 1998)
McClure, S., “Web Application Development Developer Perspectives”, An International Data Corporation
(IDC) White Paper, November 1998.
http://www.allaire.com/documents/reports/IDCReport.html

(Paolini and Fraternali 1998)
Paolini, P. and Fraternali, P., "A Conceptual Model and a Tool Environment for Developing More Scalable,
Dynamic, and Customizable Web Applications", Proceedings EDBT98 Conference, Valencia, Spain, March
1998.
http://www.ing.unico.it/autoweb/Papers/autoweb2.zip

(Schwabe and Rossi 1998)
Schwabe, D. and Rossi, G., "An Object Oriented Approach to Web-Based Application Design", Draft Paper
Current Status OOHDM, Departamento Informatica, PUC-RIO, Brazil July 1998
http://www.inf.puc-rio.br/~schwabe/papers/OOWebAplDesign.pdf.gz

